ارزیابی خصوصیات مهندسی بتن‌های خودتراکم ژئوپلیمری با استفاده از روش تاگوچی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی عمران-سازه،دانشکده فنی مهندسی، دانشگاه بوعلی سینا، همدان، ایران

2 دانشیار گروه مهندسی عمران، دانشکده فنی مهندسی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

در پژوهش حاضر در راستای توسعه پایدار و حفظ محیط‌زیست، از سرباره و خاکستربادی فعال‌شده در محیط قلیایی، به‌عنوان مواد چسباننده ژئوپلیمری جایگزین سیمان، در ساخت و ارتقا خصوصیات بتن‌های خودتراکم ژئوپلیمری استفاده گردیده است. محلول فعال‌ساز قلیایی حاوی سدیم هیدروکسید و سدیم سیلیکات مایع بوده است. عیار مواد چسباننده 500-700 کیلوگرم بر متر مکعب و نسبت آب به مواد چسباننده 45/0-48/0 بوده است. درصد یون سدیم 5-7 درصد عیار مواد چسباننده و نسبت سنگدانه درشت‌به‌ریز در سه سطح 75/25، 70/30 و 65/35 استفاده گردیده است. طراحی آزمایش‌ها با استفاده از روش تاگوچی و براساس آرایه متعامد L9 بوده است. 9 طرح مخلوط اصلی و 3 طرح مخلوط صحت‌سنجی بتن خودتراکم ژئوپلیمری ساخته شده است. مشخصات بتن تازه و خصوصیات مکانیکی از جمله مقاومت‌های فشاری و کششی دونیم‌شدن، مدول الاستیسیته و جذب آب بتن‌های خودتراکم ژئوپلیمری ارزیابی گردیده است. عیار مواد چسباننده و نسبت سنگدانه درشت به ریز بیشترین اثر را بر خصوصیات مکانیکی بتن‌های سخت شده، داشته‌اند. حداکثر مقاومت‌های فشاری و کششی دونیم‌شدن 58 و 5/4 مگاپاسکال، مدول الاستیسیته 32 گیگاپاسکال و حداقل جذب آب 8/2 درصد حاصل شده است. خصوصیات مکانیکی بتن‌های خودتراکم ژئوپلیمری با دقت مناسبی (967/0R²≥) با روش تاگوچی قابل تحلیل و پیش‌بینی بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An investigation on Engineering properties of Self-Compacting Geopolymer Concrete by Taguchi Method

نویسندگان [English]

  • shahriar abdolahzade 1
  • Mahmoud Nili 2
1 PhD Candidate, Department of Civil Engineering, Bu-Ali Sina University, Hamedan, Iran
2 Associate Professor, Department of Civil Engineering, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]


In the present study, due to sustainable development and eco-friendly aims, alkali activated slag and fly ash were used as the geopolymer binder instead of cement in self-compacting concretes. The alkaline solution consisted of sodium hydroxide and sodium silicate solutions. Binder content was between 500-700 kg/m³ and water to binder (W/B) ratio varied from 0.45 to 0.48. Na₂O percentages were in the range of 5 - 7% and three ratios of coarse to fine aggregate (25/75, 30/70, 35/65) were used. Design of experiments was based on orthogonal L9 array of Taguchi methodology. A total of nine main mixes and three validation mixes were prepared. Fresh concrete characteristics and mechanical properties including compressive strength, splitting tensile strength, modulus of elasticity and water absorption were evaluated. The results demonstrated that the binder content and coarse to fine aggregate ratio were the most influential parameters on the mechanical properties. The highest compressive strength, splitting tensile strength and modulus of elasticity were belonging to the mixture with low W/B ratio and higher binder content by 58 MPa, 4.5 MPa and 32 GPa, respectively. Moreover, Taguchi method has a good capability (R²≥0.967) to analyze and predict the mechanical properties of self-compacting geopolymer concrete.

کلیدواژه‌ها [English]

  • Self -Compacting Geopolymer Concrete
  • Slag
  • Fly Ash
  • Modulus of Elasticity
  • Taguchi Method
  1. Suji, D., Adesina, A., & Mirdula, R. (2021). Optimization of self-compacting composite composition using Taguchi-Grey relational analysis. Materialia15, 101027.
  2. De Weerdt, K., Haha, M. B., Le Saout, G., Kjellsen, K. O., Justnes, H., & Lothenbach, B. (2011). Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cement and Concrete Research41(3), 279-291.
  3. Ghorbankhani, A. H., & Nili, M. (2022). Experimental and numerical assessment of thermal properties of self-compacting mass concrete at early ages. European Journal of Environmental and Civil Engineering26(16), 8194-8211.
  4. Nehdi, M. L. (2013). Only tall things cast shadows: Opportunities, challenges and research needs of self-consolidating concrete in super-tall buildings. Construction and Building Materials, 48, 80–90.
  5. ACI Committee 237R-07 (2007), Self-Consolidating Concrete. ACI Manual of Concrete Practice.
  6. Jau, W. C., & Yang, C. T. (2010). Development of a modified concrete rheometer to measure the rheological behavior of conventional and self-consolidating concretes. Cement and Concrete Composites32(6), 450-460.
  7. Duxson, P., Provis, J. L., Lukey, G. C., & Van Deventer, J. S. (2007). The role of inorganic polymer technology in the development of ‘green concrete’. cement and concrete research37(12), 1590-1597.
  8. He, X., Zheng, Z., Ma, M., Su, Y., Yang, J., Tan, H., ... & Strnadel, B. (2020). New treatment technology: The use of wet-milling concrete slurry waste to substitute cement. Journal of Cleaner Production242, 118347.
  9. Prakasan, S., Palaniappan, S., & Gettu, R. (2020). Study of energy use and CO 2 Emissions in the Manufacturing of Clinker and Cement. Journal of The Institution of Engineers (India): Series A101, 221-232.
  10. Davidovits, J. (1991). Geopolymers: inorganic polymeric new materials. Journal of Thermal Analysis and calorimetry37(8), 1633-1656.
  11. Amran, Y. M., Alyousef, R., Alabduljabbar, H., & El-Zeadani, M. (2020). Clean production and properties of geopolymer concrete; A review. Journal of Cleaner Production251, 119679.
  12. Adesina, A. (2020). Performance and sustainability overview of alkali-activated self-compacting concrete. Waste Disposal & Sustainable Energy2(3), 165-175.
  13. Shi, C., Jiménez, A. F., & Palomo, A. (2011). New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and concrete research41(7), 750-763.
  14. Shi, C., Roy, D., & Krivenko, P. (2003). Alkali-activated cements and concretes. CRC press.
  15. Shanahan, N., Tran, V., & Zayed, A. (2017). Heat of hydration prediction for blended cements. Journal of Thermal Analysis and Calorimetry128, 1279-1291
  16. Hassan, A., Arif, M., & Shariq, M. (2020). A review of properties and behaviour of reinforced geopolymer concrete structural elements-A clean technology option for sustainable development. Journal of Cleaner Production245, 118762.
  17. Hardjito, D., Wallah, S. E., Sumajouw, D. M., & Rangan, B. V. (2004). Factors influencing the compressive strength of fly ash-based geopolymer concrete. Civil engineering dimension6(2), 88-93.
  18. Provis, J. L., & Van Deventer, J. S. J. (Eds.). (2009). Geopolymers: structures, processing, properties and industrial applications. Elsevier. ISBN: 978-1-84569-449-4
  19. Komnitsas, K. A. (2011). Potential of geopolymer technology towards green buildings and sustainable cities. Procedia Engineering21, 1023-1032.
  20. Khan, I., Xu, T., Castel, A., Gilbert, R. I., & Babaee, M. (2019). Risk of early age cracking in geopolymer concrete due to restrained shrinkage. Construction and Building Materials229, 116840.
  21. Maranan, G. B., Manalo, A. C., Benmokrane, B., Karunasena, W., & Mendis, P. (2015). Evaluation of the flexural strength and serviceability of geopolymer concrete beams reinforced with glass-fibre-reinforced polymer (GFRP) bars. Engineering Structures101, 529-541.
  22. Sumajouw, D. M. J., Hardjito, D., Wallah, S. E., & Rangan, B. V. (2007). Fly ash-based geopolymer concrete: study of slender reinforced columns. Journal of materials science42, 3124-3130.
  23. Hutagi, A., & Khadiranaikar, R. B. (2016). Flexural behavior of reinforced geopolymer concrete beams. In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT)(pp. 3463-3467). IEEE.
  24. Wei, X., Li, D., Ming, F., Yang, C., Chen, L., & Liu, Y. (2021). Influence of low-temperature curing on the mechanical strength, hydration process, and microstructure of alkali-activated fly ash and ground granulated blast furnace slag mortar.Construction and Building Materials, 269, 121811.
  25. Khale, D., & Chaudhary, R. (2007). Mechanism of geopolymerization and factors influencing its development: a review. Journal of materials science42, 729-746.
  26. Patel, Y. J., & Shah, N. (2018). Development of self-compacting geopolymer concrete as a sustainable construction material. Sustainable Environment Research28(6), 412-421.
  27. Manjunath, R., Narasimhan, M. C., Umesh, K. M., Kumar, S., & Bharathi, U. B. (2019). Studies on development of high performance, self-compacting alkali activated slag concrete mixes using industrial wastes. Construction and Building Materials198, 133-147.
  28. Nagaraj, V. K., & Venkatesh Babu, D. L. (2018). Formulation and performance evaluation of alkali-activated self-compacting concrete. Asian Journal of Civil Engineering19(8), 1021-1036.
  29. Nadoushan, M. J., & Ramezanianpour, A. A. (2016). The effect of type and concentration of activators on flowability and compressive strength of natural pozzolan and slag-based geopolymers. Construction and Building Materials111, 337-347.
  30. Shobeiri, V., Bennett, B., Xie, T., & Visintin, P. (2021). A comprehensive assessment of the global warming potential of geopolymer concrete. Journal of Cleaner Production297, 126669.
  31. Olivia, M., & Nikraz, H. (2012). Properties of fly ash geopolymer concrete designed by Taguchi method. Materials & Design (1980-2015)36, 191-198.
  32. Jang, J. G., Lee, N. K., & Lee, H. K. (2014). Fresh and hardened properties of alkali-activated fly ash/slag paste with superplasticizers. Construction and Building Materials, 50, 169-176.
  33. ASTM C618. (2012). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. American Society for Testing and Materials.
  34. Sun, Y., Liu, Z., Ghorbani, S., Ye, G., & De Schutter, G. (2022). Fresh and hardened properties of alkali-activated slag concrete: The effect of fly ash as a supplementary precursor. Journal of Cleaner Production370, 133362.
  35. ASTM C33. (2003). Standard specification for concrete aggregates. American Society for Testing and Materials.
  36. Montgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons.
  37. Roy, R. K. (2010). A primer on the Taguchi method. Society of Manufacturing Engineers.
  38. EFNARC (2005). The European guidelines for self-compacting concrete: specification, production and use.
  39. ASTM C403. (2008). Standard test method for time of setting of concrete mixtures by penetration resistance. American Society for Testing and Materials.
  40. ASTM C1611. (2018). Standard Test Method for Slump Flow of Self-Consolidating Concrete, 1, 1-6. American Society for Testing and Materials.
  41. Nath, P., Sarker, P. K., & Rangan, V. B. (2015). Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing. Procedia Engineering125, 601-607.
  42. Asayesh, S., Javid, A. A. S., Ziari, H., & Mehri, B. (2021). Evaluating fresh state, hardened State, thermal expansion and bond properties of geopolymers for the repairing of concrete pavements under restrained conditions. Construction and Building Materials292, 123398.
  43. ASTM C496. (2004). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. American Society for Testing and Materials.
  44. Manjunath, R., & Narasimhan, M. C. (2018). An experimental investigation on self-compacting alkali activated slag concrete mixes. Journal of Building Engineering17, 1-12.
  45. ASTM C469. (2002). Standard Test Method for Static Modulus of Elasticity and Poisson Ratio of Concrete in Compression. American Society for Testing and Materials.
  46. Ding, Y., Dai, J. G., & Shi, C. J. (2016). Mechanical properties of alkali-activated concrete: A state-of-the-art review. Construction and Building Materials127, 68-79.
  47. Khan, M. S. H., Castel, A., Akbarnezhad, A., Foster, S. J., & Smith, M. (2016). Utilisation of steel furnace slag coarse aggregate in a low calcium fly ash geopolymer concrete. Cement and Concrete Research89, 220-229.
  48. ACI Committee. (2008). Building code requirements for structural concrete (ACI 318-08) and commentary. American Concrete Institute.
  49. Comité Euro-International du Béton. (1993). CEB-FIP model code 1990: Design code. Thomas Telford Publishing.
  50. Rakhimova, N. R. (2022). Recent advances in blended alkali-activated cements: A review. European Journal of Environmental and Civil Engineering26(10), 4596-4618.
  51. ASTM C642 (2013). Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. American Society for Testing and Materials.
  52. Pan, Z., Feng, K. N., Gong, K., Zou, B., Korayem, A. H., Sanjayan, J., ... & Collins, F. (2013). Damping and microstructure of fly ash-based geopolymers. Journal of materials science, 48, 3128-3137.
  53. Deb, P. S., Sarker, P. K., & Barbhuiya, S. (2016). Sorptivity and acid resistance of ambient-cured geopolymer mortars containing nano-silica. Cement and Concrete Composites72, 235-245.
  54. Taghvayi, H., Behfarnia, K., & Khalili, M. (2018). The effect of alkali concentration and sodium silicate modulus on the properties of alkali-activated slag concrete. Journal of Advanced Concrete Technology16(7), 293-305.