مطالعه آزمایشگاهی تاثیر سرباره آهن بر خصوصیات مقاومتی و روانی بتن خود متراکم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی عمران، دانشگاه سمنان

2 استاد، دانشکده مهندسی عمران، دانشگاه سمنان

چکیده

هدف این تحقیق بررسی تاثیر افزودن سرباره آهن بر خواص رئولوژیکی و مقاومتی بتن خود متراکم بود. سرباره آهن با دو نوع سطح مخصوص متفاوت معمولی با 3800 بلین و نرم با 6000 بلین استفاده شدند. ده مخلوط بتن شامل بتن مرجع و 9 مخلوط حاوی سه ترکیب سرباره با نسبت 20، 30، و 40 درصد از وزن سیمان طراحی و ساخته شدند. ترکیب اول سرباره از 100 درصد سرباره معمولی، ترکیب دوم 75 درصد سرباره معمولی و 25 درصد سرباره نرم، و ترکیب سوم 50 درصد سرباره معمولی و 50 درصد سرباره نرم تشکیل شدند. آزمایشات حلقه J (برای اندازه‌گیری قطر جریان، زمان T50 و اختلاف ارتفاع بتن در وسط و بیرون حلقه) و جعبه V شکل (برای اندازه‌گیری زمان تخلیه) برای بتن تازه و آزمایشات مقاومت فشاری و مقاومت کششی دو نیم شدن برای اندازه‌گیری خواص مقاومتی بتن سخت شده انجام شدند. نتایج آزمایش حلقه نشان داد که افزودن هر یک از انواع سرباره منجر به کاهش بسیار جزئی قطر جریان شد در حالی که نتایج T50 نسبت به بتن مرجع بهبود یافتند و مخلوط‌های حاوی 20 و 30 درصد سرباره ترکیب اول به ترتیب 53 و 47 درصد کاهش داشتند. در مورد اختلاف ارتفاع بتن بین وسط و بیرون حلقه، نتایج حاکی از افزایش ارتفاع در هنگام افزودن هر ترکیب سرباره بود و مخلوط‌های حاوی 30 و 40 درصد سرباره ترکیب سوم، به ترتیب 76 و 69 درصد افزایش نشان دادند. آزمایش جعبه V شکل تنوع نتایج را نشان داد که افزودن 20 و 40 درصد سرباره ترکیب اول منجر به کاهش زمان تخلیه به ترتیب 12 و 11 درصد شد. بنابراین سرباره‌ها با دو نرمی مختلف دارای اثرات متفاوت بر قطر جریان، زمان جریان T50، Δh و زمان تخلیه بتن داشتند. نتایج نشان داد که مقاومت فشاری 28 روزه با افزودن 30 و 40 درصد سرباره ترکیب سوم، به ترتیب 12 و 15 درصد منجر افزایش داشت و مقاومت کششی دو نیم شدن نیز با افزودن 30 درصد سرباره ترکیب سوم، تا 8 درصد افزایش داشت. لذا در ترکیب دوم و سوم بتن حاوی 25 و 50 درصد سرباره با نرمی 6000 بلین، افزایش سرعت واکنش هیدراسیون و مقاومت فشاری و کششی نسبت به ترکیب اول مشاهده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Study of the Iron slag Effect on Fluidity and Strength Characteristics of Self-Compacting Concrete

نویسندگان [English]

  • Fadi Aioush 1
  • Mohammad Kazem Sharbatdar 2
1 PhD Candidate, Faculty of Civil Engineering, Semnan University, Semnan, Iran
2 Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
چکیده [English]

Rheological properties of Self-compacting concrete are important in saving time and cost. The aim of this research was to investigate the effect of adding iron slag with two different specific surfaces (the first type was normal iron slag with a specific surface of 3800 blaine and the second type was fine iron slag with a specific surface of 6000 blaine) on the rheological and strength properties of self-compacting concrete. Ten concrete mixes including control mix and nine mixes containing three compositions of iron slag were designed with proportions of (20-30-40) percent of cement weight. The first composition of slag consists was 100% normal slag, the second was 75% normal slag and 25% fine slag, and the third one was 50% normal slag and 50% fine slag. The J-ring test (to measure the flow diameter, T50 time, and the height difference of the concrete in the middle and outside of the ring ) and the V-funnel test (to measure the V-funnel time) were performed for fresh concrete. The compressive and tensile split strengths were performed to measure the strength properties of hardened concrete. The results of the J-ring test indicated that the flow diameter was decreased for concretes with each composition of slag, the mixtures containing 30 and 40% of third composition of slag had a decrease of 2.5 and 3.1%, respectively, while the T50 results compared to the control mix showed an improvement and the mixtures containing 20 and 30% of first composition of slag had a decrease of 53 and 47%, respectively. Regarding the difference in height of the concrete between the middle and outside of the ring, the results indicated an increase in height when adding any composition of slag and the mixtures containing 30 and 40% of third composition slag were increased by 76 and 69%, respectively. The V-funnel test showed variation in the results that the addition of 20 and 40% of first composition of slag resulted in a reduction of the V-funnel time by 12 and 11%, respectively. The two different slags with specific surfaces had different effects on flow diameter, T50, Δh and V-funnel time. The results of the 28-day compressive strength test indicated an increase in compressive strength when 30 and 40% of third composition of slag were added, with a ratio of 12 and 15%, respectively. However, the results of the 28-day tensile split strength test have shown that the addition of 30% of third composition of slag leads to an increase in tensile strength by 8%. The second and third compositions contain slag with a specific surface of 6000 blaine respectively 25 and 50% of the weight of each composition, this leads to an increase in the rate of hydration reaction more than that in the first composition. Therefore, the compressive and tensile strengths increases compared to the first combination.

کلیدواژه‌ها [English]

  • Self-Compacting Concrete
  • Iron Slag
  • Fluidity Indicators
  • Compressive Strength
  • Tensile Split Strength
1. Ouchi, S. Nakamura, T. Osterson, M. Lwin, Applications of self-compacting concrete in Japan, Europe and the United States. 2003.
2. Hassan, Possibility of Producing Self-compacting Concrete in Sudan. 2007, Sudan University of Science and Technology.
3. Rich, J. Glass, A.G.F. Gibb, C. Goodier, UK contractorsviews on self-compacting concrete in construction. Proceedings of the Institution of Civil Engineers-Construction Materials 2012. 165(4): p. 201-210.
W.D.A. Jalil, A.J. Haider, A.M. Hasan. Self-compacting concrete in digital fabrication and architectural construction: A review. in AIP Conference Proceedings. 2018. AIP Publishing LLC.
M.K. Sharbatdar, M. Abbasi, P. Fakharian, Improving the properties of self-compacted concrete with using combined silica fume and metakaolin. Periodica Polytechnica Civil Engineering, 2020. 64(2): p. 535-544
A.M. Zeyad, Effect of fibers types on fresh properties and flexural toughness of self-compacting concrete. Journal of Materials Research and Technology, 2020. 9(3): p. 4147-4158.
C.J. Shi, Y.K. Li, J.K. Zhang, W.G. Li, L.L. Chong, Z.B. Xie, Performance enhancement of recycled concrete aggregate - a review, J. Cleaner Prod. 112 (2016) 466–472.
F.L. Gayarre, J.G. Perez, C.L.-C. Perez, M.S. Lopez, A.L. Martínez, Life cycle assessment for concrete kerbs manufactured with recycled aggregate, J. Cleaner Prod. 113 (2016) 41–53.
B. Wu, Z. Li, Mechanical properties of compound concrete containing demolished concrete lumps after freeze-thaw cycles, Constr. Build. Mater. 155 (2017) 187–199.
G. Zhanggen, T. Jiang, J. Zhang, X. Kong, C. Chen, D.E. Lehman, Mechanical and durability properties of sustainable self-compacting concrete with recycled concrete aggregate and fly ash, slag and silica fume. Construction Building Materials, 2020. 231: p. 117115.
11. S. Al-Jabri, R.A. Taha, A. Al-Hashmi, A.S. Al-Harthy, Effect of copper slag and cement by-pass dust addition on mechanical properties of concrete, Constr. Build. Mater. 20 (5) (2006) 322–331.
12. K.D. Obe, D.J. Brito, R. Mangabhai, C.Q. Lye, Sustainable Construction Materials: Copper Slag, Woodhead Publishing, 2016.
13. S. Al-Jabri, A.H. Al-Saidy, R. Taha, Effect of copper slag as a fine aggregate on the properties of cement mortars and concrete, Constr. Build. Mater. 25 (2) (2011) 933–938.
14. R. Prem, M. Verma, P.S. Ambily, Sustainable cleaner production of concrete with high volume copper slag, J. Clean. Prod. 193 (2018) 43–58.
15. Omar Kouider, B. Menadi, G. Wardeh, S. Kenai, Performance of self-compacting concrete made with coarse and fine recycled concrete aggregates and ground granulated blast-furnace slag. J Advances in concrete construction, 2018. 6(2): p. 103.
16. Nikita, and S. Rafat, Durability characteristics of self-compacting concrete made with copper slag. Construction and Building Materials, 2020. 247: p. 118580.
17. Dinakar, K.P. Sethy, U.C. Sahoo, Design of self-compacting concrete with ground granulated blast furnace slag, Mater. Des. 43 (2013) 161–169.
18. M. Khatib, Performance of self-compacting concrete containing fly ash, Constr. Build. Mater. 22 (9) (2008) 1963–1971.
19. Duc-Hien, S. Yeong-Nain, L. My Ngoc-Tra, Fresh and hardened properties of self-compacting concrete with sugarcane bagasse ash–slag blended cement. Construction and Building Materials, 2018. 185: p. 138-147
20. Kourounis, S. Tsivilis, P. Tsakiridis, et al., Properties and hydration of blended cements with steelmaking slag, Cem. Concr. Res. 37 (2007) 815–822.
21. Huang, G.P. Xu, H.G. Cheng, et al., An overview of utilization of steel slag, Procedia Environ. Sci. 16 (2012) 791–801.
22. Pan, J. Zhou, X. Jiang, Y. Xu, R. Jin, J. Ma, Y. Zhuang, Z. Diao, S. Zhang, Q. Si, W. Chen, Investigating the effects of steel slag powder on the properties of selfcompacting concrete with recycled aggregates, Constr. Build. Mater. 200 (2019) 570–577.
23. Ghanbari, M. Lakzadeh, and O. QasemKhani, Investigation of effect of copper slag and microsilica on the properties of self-compacting concrete, The 5 th National conference of self-compacting concrete, Iran, Tehran, 2016. (in Persian).
24. Heydari, and M. Taheri Sarteshnizi, Investigating of effect of Isfahan blast furnace and iron smelting converter slag on the compressive strength of high strength self-compacting concrete, 8th National Civil Engineering Congress, Babol. 2013. (in Persian).
25. Afshoon, Y. Sharifi, Use of copper slag microparticles in self-consolidating concrete, ACI Mater. J. 114 (5) (2017) 691–699.
26. Afshoon, Y. Sharifi, ‘‘The IES Journal Part A : Civil & Structural Engineering Ground copper slag as a supplementary cementing material and its influenceon the fresh properties of self-consolidating concrete, IES J. Part A Civ. Struct. Eng. 7 (2014) 37–41.
27. Gupta, R. Siddique, Strength and micro-structural properties of selfcompacting concrete incorporating copper slag, Constr. Build. Mater. 224 (2019) 894–908.
28. Sharma, R.A. Khan, Fresh and mechanical properties of self compacting concrete containing copper slag as fine aggregates, J. Mater. Eng. Struct. 4 (2017) 25–36.
29. Sharma, R.A. Khan, Durability assessment of self compacting concrete incorporating copper slag as fine aggregates, Constr. Build. Mater. 155 (2017) 617-629.
30. Sharma, R.A. Khan, Influence of copper slag and metakaolin on the durability of self compacting concrete, J. Clean. Prod. 171 (2018) 1171–1186.
31. N. Wahedy, M.K. Sharbatdar, and O. Rezaifar, Evaluation of Sustainable Development Indicators of Infrastructures by Replacing Natural Pozzolans with High Silicate and Alumina in Cement-Based Mortar, Civil Infrastructure Researches. 2023. 9(1): p. 13-27. (in Persian).
32. K. Sharbatdar, and M. Babaei, Experimental Comparison of Effect of Isfahan and Esfarayen Slags on Strength and Durability Properties of Sulfate-Exposed Concretes and Flexural Behavior of RC Beams, Journal of Concrete Structures and Materials. 2023. 8(1): p. 14-32. (in Persian).