بررسی تاثیر دمای کلسینه شدن رس بر روی مقاومت فشاری و دوام بتن های LC3

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری سازه دانشکده فنی دانشگاه گیلان

2 استاد دانشکده فنی و مهندسی دانشگاه گیلان

3 2- دانشیار دانشکده فنی و مهندسی دانشگاه گیلان

چکیده

فرآیند آماده سازی رس کلسینه شده تاثیر بسیار زیادی بر روی عملکرد آن در مخلوط سیمانی دارد. آزمایش‌های مقاومت فشاری و ضریب انتشار یون کلرید طبق استاندارد NT Build 492 بر روی مخلوط کنترل و بتن‌های (Limestone Calcined Clay Cement) LC3 با رس‌های کلسینه شده در دماهای 700، 800 و 900 درجه سانتی‌گراد با روش کنترل شده و رس کلسینه شده با روش احتراق آنی در دمای 800 درجه سانتی گراد انجام شده است. همچنین با استفاده ضرایب انتشار بدست آمده زمان شروع خوردگی تخمین زده شده است. نتایج آزمایش‌های XRD نشان‌دهنده آمورف بودن رس کلسینه شده آماده شده با روش های مورد بررسی بوده است. آزمایش های XRD، سطح ویژه و شاخص فعالیت پوزولانی نشانگر کیفیت مناسب تر رس کلسینه شده در دمای 800 درجه سانتیگراد با روش احتراق کنترل شده است. در مقایسه با مخلوط کنترل، استفاده از رس کلسینه شده موجب افزایش نیاز آبی بتن شده است. اما موجب بهبود قابل ملاحظه دوام بتن LC3 بدون کاهش قابل ملاحظه مقاومت فشاری شده است. نتایج مقاومت فشاری و نفوذ یون کلرید نشانگر آن است که دمای بهینه کلسینه شدن برای خاک مورد بررسی 800 درجه سانتر گراد می‌باشد. استفاده از روش افزایش دمای آنی برای کلسینه نمودن رس، باعث افت عملکرد بتن LC3 شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effect of Clay Calcination Temperature on Compressive Strength and Durability of LC3 Concretes

نویسندگان [English]

  • sina nasiri 1
  • Rahmat Madandoust 2
  • Malek Muhammad Ranjbar 3
1 Ph.D. Candidate., Civil Engineering Department, Guilan, Iran
2 Professor, Department of Civil Engineering, University of Guilan
3 Associate Professor, Department of Civil Engineering, University of Guilan
چکیده [English]

The preparation process of calcined clay has a significant impact on its performance in cementitious mixtures. Compressive strength and rapid chloride ion migration tests (RCMT) were conducted on the control mixture and Limestone Calcined Clay Cement (LC3) concretes containing calcined clay prepared at calcination temperatures of 700, 800, and 900 ºC through controlled calcination, as well as calcined clay prepared through instantaneous calcination at 800 ºC Celsius using the RCMT method. Additionally, the obtained diffusion coefficients were used to estimate the time of corrosion initiation. X-ray diffraction (XRD) tests indicate the amorphous nature of the calcined clay prepared through the examined methods. XRD, specific surface area, and pozzolanic activity index confirm the superior quality of calcined clay annealed at 800 ºC using controlled calcination. In comparison to the control mixture, the use of calcined clay leads to an increase in the water demand of the concrete. However, it significantly improves the durability of LC3 concrete without compromising its compressive strength. The results of compressive strength and chloride ion penetration indicate that the optimum calcination temperature for the examined soil is 800 ºC. The use of the rapid annealing method for clay calcination results in a decline in the performance of LC3 concrete.

کلیدواژه‌ها [English]

  • Clay Calcination Temperature
  • Instantaneous Calcination
  • Controlled Calcination
  • LC3 Concrete
  • Durability
[1] Maraghechi H., Avet F., Wong H., Kamyab H., and Scrivener K., 2018, “Performance of Limestone Calcined Clay Cement (LC3) with various kaolinite contents with respect to chloride transport”, Mater. Struct. Constr., vol. 51, no. 5, 2018, doi: 10.1617/s11527- 018-1255-3.
[2] Lothenbach B., Saout G. L., Gallucci E., and Scrivener K., 20008, “Influence of limestone on the hydration of Portland cements”, Cem. Concr. Res. 2008, 38, 848–860. https://doi.org/10.1016/j.cemconres.2008.01.002.
[3] Shi Z.G., Geiker M.R., DeWeerdt K., Ostnor T.A., Lothenbach B.,Winnefeld F., Skibsted J., 2017, “Role of calcium on chloride binding in hydrated Portland cement-metakaolin-limestone blends”, Cem. Concr. Res., 95, 205–216. https://doi.org/10.1016/j.cemconres.2017.02.003
[4] Mehta.P.K and Monteiro.J.M, 2006, “Concrete, Microstructure, Properties and Materials”,' Mac Graw-Hill, 3'th ed.
 [5] Scrivener K., Martirena F., Bishnoi S., and Maity S., 2018, “Calcined clay limestone cements (LC3)”, Cem. Concr. Res., 114, 49–56. https://doi.org/10.1016/j.cemconres.2017.08.017
[6] Mishra G., Emmanuel A.C., and Bishnoi S., 2019, “Influence of temperature on hydration and microstructure properties of limestone-calcined clay blended cement”, Mater. Struct., 52, 91. https://doi.org/10.1617/s11527-019-1390-5
[7] Nicolas R. S., Cyr M., and Escadeillas G., 2014, “Performance-based approach to durability of concrete containing flash-calcined metakaolin as cement replacement”, Constr. Build. Mater., 55, 313–322. https://doi.org/10.1016/j.conbuildmat.2014.01.063
 [8] Antoni M., Rossen J., Martirena F., and Scrivener K., 2012, “Cement substitution by a combination of metakaolin and limestone”, Cem. Concr. Res. 2012, 42, 1579–1589. https://doi.org/10.1016/j.cemconres.2012.09.006
[9] Dhandapani Y., Sakthivel T., Santhanam M., Gettu R., and Pillai R.G., 2018, “Mechanical properties and durability performance of concretes with Limestone Calcined Clay Cement (LC3)”, Cem. Concr. Res. 107, 136–151. https://doi.org/10.1016/j.cemconres.2018.02.005
[10] Nguyen Q.D., Afroz S., and Castel A., 2020, “Influence of Calcined Clay Reactivity on the Mechanical Properties and Chloride Diffusion Resistance of Limestone Calcined Clay Cement (LC3) Concrete”, J. Mar. Sci. Eng., 8, 301, doi:10.3390/jmse8050301
 [11] Tironi A., Scian A.N., and Irassar E.F., 2017, “Blended Cements with Limestone Filler and Kaolinitic Calcined Clay: Filler and Pozzolanic effects”, J. Mater. Civ. Eng. 29 (9), 04017116. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001965
 [12] Sommariva Z., and Alberto F., 2020, “Limestone calcined clay cements (LC3): raw material processing, sulfate balance and hydration kinetics”, Ph.D thesis, EPFL, Lausanne, https://doi.org/10.5075/epfl-thesis-8173
[13] Ferreiro S., Herfort D., and Damtoft J. S., 2017, “Effect of raw clay type, fineness, water-to-cement ratio and fly ash addition on workability and strength performance of calcined clay – Limestone Portland cements”, Cement and Concrete Research, 101, 1–12. doi:10.1016/j.cemconres.2017.08.003
[14] Ferreiro S., Canut M. M. C., Lund J., Herfort D., 2019, “Influence of fineness of raw clay and calcination temperature on the performance of calcined clay-limestone blended cements”, Applied Clay Science, 169, 81–90. doi:10.1016/j.clay.2018.12.021
[15] Balykov A.S., Nizina A.A., Volodin V.V., and Kyashkin V.M., 2021, “Effects of calcination temperature and time on the physical-chemical efficiency of thermally activated clays in cement systems”, Materials Science Forum. Vol. 1017, pp 61-70, https://doi.org/10.4028/www.scientific.net/MSF.1017.61
[16] Marangu, J.M., 2020, “Physico-chemical properties of Kenyan made calcined Clay -Limestone cement (LC3)”, Case Stud. Constr. Mater., 12, e00333. https://doi.org/10.1016/j.cscm.2020.e00333
[17] Lin R.Sh., Oh S., Du W., and Wang X.Y., 2022, “Strengthening the performance of limestone-calcined clay cement (LC3) using nano silica”, Construction and Building Materials, 340, 127723, https://doi.org/10.1016/j.conbuildmat.2022.127723
[18] Bahman-Zadeh F., Ramezanianpour A.A., and Zolfagharnasab A., 2022, “Effect of carbonation on chloride binding capacity of limestone calcined clay cement (LC3) and binary pastes”, Journal of Building Engineering, 52, 104447. https://doi.org/10.1016/j.jobe.2022.104447
[19] Avet F., and Scrivener K., 2020m “Influence of pH on the chloride binding capacity of Limestone Calcined Clay Cements (LC3)”, Cem. Concr. Res., 131, 106031. https://doi.org/10.1016/j.cemconres.2020.106031
[20] Alghamdi H., Shoukry H., Abadel A.A., and Khawaji M., 2023, “Performance assessment of limestone calcined clay cement (LC3)-Based lightweight green mortars incorporating recycled waste aggregate”, J. M. R. & T., 2065-2074, https://doi.org/10.1016/j.jmrt.2023.01.133
[21] Avet F., Sofia L., and Scrivener K., 2019, “Concrete Performance of Limestone Calcined Clay Cement (LC3) Compared with Conventional Cements”, Adv. Civ. Eng. Mater. 8, 20190052. doi:10.1520/acem20190052.
[22] Gbozee M., Zheng K., He F., Zeng X., The influence of aluminum from metakaolin on chemical binding of chloride ions in hydrated cement pastes. Appl. Clay Sci. 2018, 158, 186–194. https://doi.org/10.1016/j.clay.2018.03.038
[23] Nguyen Q.D., Khan M.S.H., and Castel A., 2018, “Engineering Properties of Limestone Calcined Clay Concrete”, J. Adv. Concr. Technol., 16, 343–357. http://dx.doi.org/10.3151/jact.16.343
[24] Vayghan A. G., Khaloo A.R., Nasiri S., and Rajabipour F., 2012, “Studies on the effect of retention time of rice husk combustion on the ash’s chemo-physical properties and performance in cement mixtures.” J. Mater. Civ. Eng. 24 (6): 691–697. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000426.
[25] Iranian Institute of Standards and Industrial Research, "Characteristics of Portland Cement," No. 389.((in Persian))
[26] Iran National Standards Organization, "Aggregates for Concrete - Specifications," No. 302. ((in Persian))
[27] ASTM C311, 2017, “Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete”, ASTM International, Philadelphia, PA.
[28] ASTM C1240, 2017, “Standard Specification for Silica Fume Used in Cementitious Mixtures”, ASTM International, Philadelphia, PA.