پیش‌بینی مقاومت فشاری ملات استاندارد ماسه سیمان با استفاده از شبکه عصبی مصنوعی و در نظر گرفتن اثر نرمی سیمان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری سازه، گروه مهندسی عمران، دانشکده مهندسی، دانشگاه فردوسی مشهد

2 استادیار گروه مهندسی عمران، دانشکده مهندسی، دانشگاه فردوسی مشهد

3 کارشناسی ارشد مدیریت ساخت، کارخانه سیمان زاوه تربت

چکیده

نقش نرمی سیمان در روند هیدراتاسیون و رشد مقاومت فشاری در سنین پایین مواد پایه سیمانی غیرقابل انکار است؛ بر این اساس می‌طلبد که اثر آن در مدل‌های پیش‌بینی مورد بررسی قرار گیرد. از این رو، در این پژوهش یک بررسی گسترده شامل 640 ترکیب سیمان (1920 آزمونه ملات سیمان) از محصولات کارخانه سیمان با درصدهای مختلف مواد خام ورودی به کوره سیمان انجام شد. مواد خام اولیه شامل اکسیدهای سیلیس، آلومینیوم، آهن، کلسیم، منیزیم، گوگرد، پتاسیم و سدیم برای پیش‌بینی مقاومت فشاری 7 روزه ملات استاندارد سیمان با استفاده از روش شبکه عصبی مصنوعی (ANN) در نظر گرفته شد. نرمی پودر سیمان مورد استفاده در این نمونه‌ها به عنوان یک عامل اثرگذار نیز مورد بررسی قرار گرفت. به این منظور، دو مدل در دو حالت با و بدون در نظر گرفتن نرمی سیمان در پارامترهای ورودی به کار گرفته شد. پس از بررسی نتایج به دست آمده می‌توان مشاهده کرد که مدلANN با در نظر گرفتن نرمی سیمان عملکرد مناسب‌تری نسبت به مدل دیگر دارد. یافته‌های این پژوهش برای پیش‌بینی مقاومت فشاری سیمان تولیدی در کارخانه‌ها می‌تواند هزینه‌های آزمایشگاهی مربوطه را به شدت کاهش دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Prediction of Standard Sand cement Mortar Compressive Strength Using Artificial Neural Network and Considering the Effect of Cement Fineness

نویسندگان [English]

  • Sahar Mahdinia 1
  • Mohammadreza Tavakkolizadeh 2
  • Mahdi Ahmadi Jalayer 3
1 PhD Student, Structural Engineering, Department of Civil Engineering, Ferdowsi University of Mashhad
2 Assistant Professor, Department of Civil Engineering, Ferdowsi University of Mashhad
3 MSc in Construction Management, Zaveh Torbat Cement Factory
چکیده [English]

The role of cement fineness in the process of hydration and development of compressive strength in the early ages of cement-based materials is irrefutable and it requires that its effect be investigated by predicting models. Therefore, an extensive study including 640 cement composition (1920 cement mortar specimens) from a cement factory with different percentages of raw materials feeding to the cement kiln including SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, K2O, and Na2O were used to predict the 7-day compressive strength of cement mortar by artificial neural network (ANN). To investigate the effect of cement fineness, two models have been developed in two states of with and without fineness effect. Results confirmed the significant role of cement fineness as an input parameter in the performance of predicting model. The findings of this research can be used in cement production facilities in order to reduce the laboratory costs.

کلیدواژه‌ها [English]

  • Compressive Strength
  • Cement Mortar
  • Artificial Neural Network
  • Cement Fineness
  • Raw Materials
  1. Ahmadi B, Khalooee S. (2022). The Use of high Volume of Glass Powder as a Substitute for Cement in Self-Compacting Concrete. Journal of Concrete Structure and Materials. 7(1): p. 137-156. (in persian).
  2. Mahdinia S, Eskandari-Naddaf H and Shadnia R. (2017). Effect of Main factors on fracture mode of mortar, a graphical study. Civil Engineering Journal. 3(10): p. 897-90310.28991.
  3. Lesko S, Lesniewska E, Nonat A, Mutin J-C, and Goudonnet J-P. (2001). Investigation by atomic force microscopy of forces at the origin of cement cohesion. Ultramicroscopy. 86(1-2): p. 11-21.
  4. Korouzhdeh T and Eskandari-Naddaf H. (2022). Mechanical properties and microstructure evaluation of cement mortar with different cement strength classes by image analysis. Arabian Journal for Science and Engineering. 47(4): p. 4763-4783.
  5. Yuan Q, Xie Z, Yao H, Huang T, and Fan M. (2022). Hydration, mechanical properties, and microstructural characteristics of cement pastes with different ionic polyacrylamides: A comparative study. Journal of Building Engineering: p. 104763.
  6. MansourghanaeiM, Biklaryan M and Mardookhpour A. (2022). Experimental Investigation of the Effect of Nanosilica on the Mechanical Properties and Durability of Slag Geopolymer Concrete. Journal of Concrete Structure and Materials. 7(1): p. 93-113. (in persian).
  7. Ghanei A, Eskandari-Naddaf H, Ozbakkaloglu T and Davoodi A. (2020). Electrochemical and statistical analyses of the combined effect of air-entraining admixture and micro-silica on corrosion of reinforced concrete. Construction and Building Materials. 262: p. 120768.
  8. Arabshahi A, Gharaei-Moghaddam N and Tavakkolizadeh M. Development of applicable design models for concrete columns confined with aramid fiber reinforced polymer using Multi-Expression Programming. in Structures. 2020. Elsevier.
  9. Kooshkaki A and Eskandari-Naddaf H. (2019). Effect of porosity on predicting compressive and flexural strength of cement mortar containing micro and nano-silica by multi-objective ANN modeling. Construction and Building Materials. 212: p. 176-191.
  10. Mahdinia S, Eskandari-Naddaf H and Shadnia R. (2019). Effect of cement strength class on the prediction of compressive strength of cement mortar using GEP method. Construction and Building Materials. 198: p. 27-41.
  11. Sarıdemir M. (2009). Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic. Advances in Engineering Software. 40(9): p. 920-927.
  12. Azimi-Pour M, Eskandari-Naddaf H and Pakzad A. (2020). Linear and non-linear SVM prediction for fresh properties and compressive strength of high volume fly ash self-compacting concrete. Construction and Building Materials. 230: p. 117021.
  13. Adeli H and Seon Park H. (1995). Counterpropagation neural networks in structural engineering. Journal of Structural Engineering. 121(8): p. 1205-1212.
  14. Xi X, Yin Z, Yang S and Li C-Q. (2021). Using artificial neural network to predict the fracture properties of the interfacial transition zone of concrete at the meso-scale. Engineering Fracture Mechanics. 242: p. 107488.
  15. Felix E F, Carrazedo R and Possan E. (2021). Carbonation model for fly ash concrete based on artificial neural network: Development and parametric analysis. Construction and Building Materials. 266: p. 121050.
  16. Abuodeh O R, Abdalla J A and Hawileh R A. (2020). Assessment of compressive strength of Ultra-high Performance Concrete using deep machine learning techniques. Applied Soft Computing. 95: p. 106552.
  17. Ghorbani A. (2021). Experimental and Analytical Investigation on The Effect of Steel Fibers on The Mechanical Properties and Performance of Fibrous Self-Compacting Concretes. Journal of Concrete Structure and Materials. 6(2): p. 115-131. (in persian).
  18. Soltangharaei V, Anay R, Assi L, Bayat M, Rose J, and Ziehl P. (2021). Analyzing acoustic emission data to identify cracking modes in cement paste using an artificial neural network. Construction and Building Materials. 267: p. 121047.
  19. Mohammed A, Rafiq S, Mahmood W, Al-Darkazalir H, Noaman R, Qadir W, and Ghafor K. (2021). Artificial Neural Network and NLR techniques to predict the rheological properties and compression strength of cement past modified with nanoclay. Ain Shams Engineering Journal. 12(2): p. 1313-1328.
  20. Terzić A, Radulović D, Pezo M, Stojanović J, Pezo L, Radojević Z, and Andrić L. (2020). Prediction model based on artificial neural network for pyrophyllite mechano-chemical activation as an integral step in production of cement binders. Construction and Building Materials. 258: p. 119721.
  21. Onal O and Ozturk A U. (2010). Artificial neural network application on microstructure–compressive strength relationship of cement mortar. Advances in Engineering Software. 41(2): p. 165-169.
  22. Onyari E and Ikotun B. (2018). Prediction of compressive and flexural strengths of a modified zeolite additive mortar using artificial neural network. Construction and Building Materials. 187: p. 1232-1241.
  23. Nasr D, Behforouz B, Borujeni P R, Borujeni S A, and Zehtab B. (2019). Effect of nano-silica on mechanical properties and durability of self-compacting mortar containing natural zeolite: Experimental investigations and artificial neural network modeling. Construction and Building Materials. 229: p. 116888.
  24. Eskandari-Naddaf H and Kazemi R. (2017). ANN prediction of cement mortar compressive strength, influence of cement strength class. Construction and Building Materials. 138: p. 1-11.
  25. Akkurt S, Ozdemir S, Tayfur G and Akyol B. (2003). The use of GA–ANNs in the modelling of compressive strength of cement mortar. Cement and concrete research. 33(7): p. 973-979.
  26. Duan Z-H, Kou S-C and Poon C-S. (2013). Prediction of compressive strength of recycled aggregate concrete using artificial neural networks. Construction and Building Materials. 40: p. 1200-1206.
  27. ASTM C. (1999). 305, Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM International.
  28. Astm C. (2021). 109: Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. Annual Book of ASTM Standards.
  29. Astm C. (2016). 204: Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability. Annual Book of ASTM Standards. 4.
  30. ASTM C. (2018). 114, Standard Test Methods for Chemical Analysis of Hydraulic Cement. Annual Book of ASTM Standards.
  31. García-Florentino C, Maguregui M, Morillas H, Marcaida I, and Madariaga J M. (2017). A fast in situ non-invasive approach to classify mortars from a construction of high historical value. Microchemical Journal. 133: p. 104-113.
  32. Astm C. (2002). 349-02: Standard Test Method for Compressive Strength of Hydraulic-Cement Mortars (Using Portions of Prisms Broken in Flexure). ASTM International.
  33. Jin L, Dong T, Fan T, Duan J, Yu H, Jiao P, and Zhang W. (2022). Prediction of the chloride diffusivity of recycled aggregate concrete using artificial neural network. Materials Today Communications: p. 104137.
  34. Zhao Y, Hu H, Song C and Wang Z. (2022). Predicting compressive strength of manufactured-sand concrete using conventional and metaheuristic-tuned artificial neural network. Measurement. 194: p. 110993.
  35. Hatami F and Amiri M. (2022). Experimental study of mechanical properties and durability of green concrete containing slag, waste rubber powder and recycled aggregate with artificial neural network. Cleaner Materials. 5: p. 100112.
  36. Azimi-Pour M and Eskandari-Naddaf H. (2018). ANN and GEP prediction for simultaneous effect of nano and micro silica on the compressive and flexural strength of cement mortar. Construction and Building Materials. 189: p. 978-992.