اثر قطر میلگرد و ضوابط ضخامت پوشش بتنی بر مدل‌های رخداد ترک ناشی از خوردگی میلگرد

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، دانشکده صنعت و معدن، دانشگاه یاسوج، چرام، ایران

چکیده

خوردگی میلگردها یکی از مهمترین عوامل کاهش مقاومت و انهدام سازه‌های بتنی در طی زمان بهره‌برداری از سازه می‌باشد. برای پیش‌بینی رفتار سازه‌های بتنی که در محیط‌های خورنده قرار دارند از مدل‌های مختلف عمر که مبتنی بر تجربیات آزمایشگاهی و یا تحلیل‌های عددی هستند استفاده می‌شود. از مهمترین مدل‌های مورد نظر در سازه‌های بتنی، مدل‌هایی هستند که زمان رخداد ترک‌ها در قطعه بتنی را به واسطه خوردگی میلگرد ارائه می‌دهند. این مدل‌ها، به دلیل تأثیر عوامل محیطی و همچنین وجود عدم قطعیت‌های فراوان در رفتار بتن دارای خطاهایی می‌باشند. یکی از الزامات مبحث نهم مقررات ملی ساختمان برای در نظر گرفتن شرایط محیطی، اعمال حداقل ضخامت پوشش بتن روی میلگردها است. در این پژوهش، اثر ضخامت پوشش بتنی روی میلگردها، قطر میلگردها و همچنین اثر شدت خوردگی میلگرد از طریق اعمال مقادیر مختلف چگالی جریان خوردگی بر نتایج بدست آمده از مهمترین مدل‌های موجود برای پیش بینی رخداد ترک بررسی شده است. اثر عدم قطعیت از طریق اعمال ضرایب تغییرات در پارامترها اعمال شده است. نتایج بیانگر اثر عدم قطعیت مقدار چگالی جریان خوردگی در مقدار میانگین زمان آغاز ترک خوردگی است به طوریکه با افزایش ضریب تغییرات این متغیر، زمان پیش بینی شده برای رخداد ترک در جهت عدم اطمینان افزایش پیدا می‌کند. نتایج همچنین نشان داد در صورت انتخاب بیشینه نسبت پوشش بتن به قطر میلگرد در هر شرایط محیطی می توان زمان رخداد ترک را تقریباً تا چهار برابر به تأخیر انداخت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Reinforcement Diameter and Clear cover Regulations on the Crack Initiation Models Due to Rebar Corrosion

نویسنده [English]

  • Seyed Abbas Hosseini
Assistant Professor, Faculty of Technology and Mining, Yasouj University, Choram, Iran
چکیده [English]

Reinforcement corrosion is one of the most important factors in reducing the strength and destruction of concrete structures during the lifetime of the structure. Various service life prediction models based on laboratory experiments or numerical analysis are used to predict the behavior of concrete structures in aggressive environments. Models that predict the time to cover cracking induced by corrosion are among the most important service life model in concrete structures. These models have some errors due to the influence of environmental factors and also the existence of uncertainties in the concrete properties. In this study, the effect of environmental conditions that are usually applied in regulations by increasing the thickness of the concrete cover was investigated on existing models. In addition to the concrete cover, the effect of other environmental parameters such as corrosion intensity was also investigated. The effect of uncertainty is applied by applying coefficients of variation to the parameters. The results show the effect of uncertainty of the amount of corrosion current density on the average value of crack initiation time so that by increasing the coefficient of variation of this variable, the predicted time for the occurrence of crack increases. this overestimated time is not conservative. The results also revealed that if the maximum ratio of concrete cover to rebar diameter (c/D) is selected in any environmental conditions, the crack initiation time can be delayed approximately 4.3 times.

کلیدواژه‌ها [English]

  • Reinforcement Corrosion
  • Crack
  • Crack Initiation Time
  • Environmental Condition
  1. Zhang, X., et al., Effects of initial defects within mortar cover on corrosion of steel and cracking of cover using X-ray computed tomography. Construction and Building Materials, 2019. 223: p. 265-277.
  2. Guzmán, S. and J.C. Gálvez, Modelling of concrete cover cracking due to non-uniform corrosion of reinforcing steel. Construction and Building Materials, 2017. 155: p. 1063-1071.
  3. Liang, Y. and L. Wang, Prediction of corrosion-induced cracking of concrete cover: A critical review for thick-walled cylinder models. Ocean Engineering, 2020. 213: p. 107688.
  4. Qiao, D., et al., Crack patterns of concrete with a single rebar subjected to non-uniform and localized corrosion. Construction and Building Materials, 2016. 116: p. 366-377.
  5. Otieno, M., J. Ikotun, and Y. Ballim, Experimental investigations on the influence of cover depth and concrete quality on time to cover cracking due to carbonation-induced corrosion of steel in RC structures in an urban, inland environment. Construction and Building Materials, 2019. 198: p. 172-181.
  6. Andrade, C., C. Alonso, and F. Molina, Cover cracking as a function of bar corrosion: Part I-Experimental test. Materials and structures, 1993. 26(8): p. 453-464.
  7. Zhong, J., P. Gardoni, and D. Rosowsky, Stiffness degradation and time to cracking of cover concrete in reinforced concrete structures subject to corrosion. Journal of engineering mechanics, 2010. 136(2): p. 209-219.
  8. Vidal, T., A. Castel, and R. François, Analyzing crack width to predict corrosion in reinforced concrete. Cement and concrete research, 2004. 34(1): p. 165-174.
  9. Bazant, Z.P., Physical model for steel corrosion in concrete sea structures-theory. ASCE J Struct Div, 1979. 105(6): p. 1137-1153.
  10. Sanz, B., J. Planas, and J. Sancho, A closer look to the mechanical behavior of the oxide layer in concrete reinforcement corrosion. International Journal of Solids and Structures, 2015. 62: p. 256-268.
  11. Rodriguez, J., et al., 12 CORROSION OF REINFORCEMENT AND SERVICE LIFE OF CONCRETE STRUCTURES. Durability of Building Materials & Components 7 vol. 1, 2018: p. 117.
  12. Webster, M.P., The assessment of corrosion-damaged concrete structures. 2000, University of Birmingham.
  13. Torres-Acosta, A.A. and A.A. Sagues, Concrete cracking by localized steel corrosion--Geometric effects. Materials Journal, 2004. 101(6): p. 501-507.
  14. Zhao, X., et al., Research on corrosion detection for steel reinforced concrete structures using the fiber optical white light interferometer sensing technique. Smart materials and structures, 2013. 22(6): p. 065014.
  15. Jamali, A., et al., Modeling of corrosion-induced concrete cover cracking: A critical analysis. Construction and Building Materials, 2013. 42: p. 225-237.
  16. DuraCrete, Modeling of degradation. 1998: BRITE–EURAM-project BE95-1347/R4-5.

 

  1. Rodriguez, J., et al., Assessing structural conditions of concrete structures with corroded reinforcement. Concrete Repair, Rehabilitation and Protection (Edited by RK Dhir and MR Jones), E & FN Spon, London, 1996: p. 65-78.
  2. Rodriguez, J., L. Ortega, and J. Casal. Corrosion of reinforcing bars and service life of reinforced concrete structures: corrosion and bond deterioration. in International conference on concrete across borders, Odense, Denmark. 1994.
  3. Nowak, A.S. and K.R. Collins, Reliability of structures. 2012: CRC Press.

 

  1. Ellingwood, B.R. and Y. Mori, Probabilistic methods for condition assessment and life prediction of concrete structures in nuclear power plants. Nuclear engineering and design, 1993. 142(2-3): p. 155-166.
  2. Bhargava, K., Y. Mori, and A. Ghosh, Time-dependent reliability of corrosion-affected RC beams—Part 1: Estimation of time-dependent strengths and associated variability. Nuclear Engineering and Design, 2011. 241(5): p. 1371-1384.