ارزیابی لرزه‌ای هسته‌های مقاوم بتن‌آرمه در ساختمان‌های بلندمرتبه با سیستم لوله در لوله دارای بازشو در دیافراگم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی عمران، واحد ارومیه، دانشگاه آزاد اسلامی، ارومیه، ایران

2 استادیار، گروه مهندسی عمران، واحد ارومیه، دانشگاه آزاد اسلامی، ارومیه، ایران

چکیده

در این مقاله رفتار و عملکرد لرزه‌ای سازه‌های بلند با سیستم سازه‌ای لوله در لوله به‌عنوان یکی از سیستم‌های باربر جانبی با هسته بتنی دارای بازشو در دیافراگم مورد مطالعه قرار می‌گیرد. به منظور بررسی تأثیر سیستم لوله در لوله با هسته مرکزی بر رفتار لرزه‌ای سازه بلند، مدل سازه‌ای در دو حالت با لوله داخلی و بدون در نظر گرفتن لوله داخلی مورد ارزیابی قرار می‌گیرد. جهت بررسی رفتار لرزه‌ای مدل سازه‌ای از سه روش تحلیل استاتیکی معادل، تحلیل دینامیکی تاریخچه زمانی غیرخطی و تحلیل استاتیکی غیرخطی (پوش‌اور) استفاده می‌شود. همچنین از یک مدل سازه‌ای 25 طبقه با سیستم لوله در لوله با هسته بتنی استفاده می‌شود به طوری‌که این مدل سازه‌ای در طبقات آخر دارای بازشو در دیافراگم می‌باشد. نتایج بدست آمده از مطالعات صورت گرفته نشان می‌دهد که استفاده از هسته بتنی به عنوان لوله مرکزی موجب کاهش محسوسی در جابجایی جانبی و دریفت طبقات می‌شود. همچنین نتایج بدست آمده از تحلیل استاتیکی غیرخطی (پوش‌اور) نشان می‌دهد که با استفاده از هسته بتنی مرکزی، ظرفیت نهایی سازه و شکل‌پذیری سازه افزایش چشم‌گیری پیدا می‌کند. نتایج بدست آمده از تحلیل دینامیکی تاریخچه زمانی غیرخطی نشان می‌دهند که برای این سیستم سازه‌ای روش استاتیکی غیرخطی از دقت خوبی در محاسبه حداکثر تغییرمکان سازه برخوردار می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Seismic Evaluation of Reinforced Concrete Cores in High-Rise Buildings with Void Tube in Tube Systems

نویسندگان [English]

  • Hamed Bidar 1
  • Ashkan KhodaBandehLou 2
1 M.Sc. Student, Civil Engineering Department, Faculty of Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
2 Assistant Professor, Civil Engineering Department, Faculty of Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
چکیده [English]

In this paper, the seismic behavior of reinforced concrete (RC) high-rise buildings with frame-core tube systems as one of the lateral bearing systems are studied. In order to investigate the effect of the core tube system on the seismic behavior of the high-rise building, the structural model is evaluated in two cases with the inner core tube and without the inner core tube. Three methods of equivalent static analysis, dynamic nonlinear time history analysis and nonlinear static analysis (push-over analysis) are used. Also, a 25-story high-rise building with a frame-core tube system having voids in the last floors is implemented. The results showed that the use of RC core as a central tube significantly reduces the lateral displacement and drift of floors. Also, the results obtained from the nonlinear static analysis indicated that using the central RC core, the ultimate capacity of the building as well as the ductility of the building increase significantly. Finally, the results obtained from the nonlinear time history showed that the nonlinear static analysis have good accuracy in calculating the maximum displacement of the structure.

کلیدواژه‌ها [English]

  • High-Rise Building
  • Frame-Core Tube System
  • Time History Analysis
  • Push-over Analysis
  • Seismic Response
[1] H. Saffari, R. Rahgozar and R. Mahjoub, "Approximate analysis of tall structures strengthen with peripheral frame against lateral forces", The First Conference on Safety and Rehabilitation of Structures, Tehran, Iran, 2002 (In Persian).
[2] H.A. DareShiri and M. Taregh, "Nonlinear static analysis of RC buildings with regular ductility and irregular plan designed based on Iranian regulations", The 8th National Congress of Civil Engineering, Shiraz, Iran, 2009. (In Persian).
[3] H. Naderpour, A. Kheyroddin, "Shear lag phenomenon in RC tall buildings with tubular system", Journal of Modeling in Engineering, Vol. 9, No. 26, 2011, pp. 33-48. doi: 10.22075/jme.2017.1594 (In Persian).
[4] A. Najafgholizadeh and Y. Yasrebinia, "Investigation of the behavior of tall steel structures using truss belt system and brachial restraint", The First National Conference on Sustainable Building, Mashhad, Iran, 2013 (In Persian).
[5] R. Rahgozar and M. Feyzabad, "Approximate analysis of the nested peripheral frame system, arm restraint and truss belt in tall buildings", The 7th National Congress of Civil Engineering, Zabol, Iran, 2013. (In Persian).
[6] A. Fereydoon, A. Mohammadzadeh, "Optimal design in honeycomb sandwich panels under the pressure load with ICA method", Journal of Modeling in Engineering, Vol. 12, No. 38, 2014, pp. 117-128. doi: 10.22075/jme.2017.1683 (In Persian).
[7] N. Siahpolo, A. Kheyroddin and M. Gerami, "Analytical assessment of pros and cons for prevalent tall building system in comparison with tube system using ASCE7-05 wind load specifications", Amirkabir Journal of Civil Engineering, Vol. 48, No. 1, 2016, pp. 87-100. (In Persian)
[8] H. Raeisi, M. Malekinejad, R. Rahgozar, "Determination optimum location of outrigger and belt truss system in tall buildings with non-uniform cross section", Journal of Modeling in Engineering, Vol. 16, No. 53, 2018, pp. 289-297. doi: 10.22075/jme.2017.6163 (In Persian)
[9] D. Scott, D. Farnsworth, M. Jackson and M. Clark, "The effects of complex geometry on tall towers", The Structural Design of Tall and Special Buildings, Vol. 16, 2007, pp. 441-455.
[10] M.M. Ali and K.S. Moon, "Structural developments in tall buildings: current trends and future prospects", Architectural Science Review, Vol. 50, No. 3, 2007, pp. 205-223.
[11] M. Elnimeiri and P. Gupta, "Sustainable structure of tall buildings", The Structural Design of Tall and Special Buildings, Vol. 17, 2008, pp. 881-894.
[12] Y. Chen, D.M. McFarland, Z. Wang and B.F. Spencer Jr, "Analysis of tall buildings with damped outriggers", Journal of Structural Engineering, Vol. 136, 2010, pp.1435-1443.
[13] J.A. Amin and A.K. Ahuja, "Aerodynamic modifications to the shape of the buildings: A review of the state of the art", Asian Journal of civil engineering (Building and Housing), Vol. 11, No. 4, 2010, pp. 433-450.
[14] J. Kim and S. Hong, "Progressive collapse performance of irregular buildings", The Structural Design of Tall and Special Buildings, Vol. 20, 2011, pp. 721-734.
[15] K.S.Moon, "Diagrid structures for complex-shaped tall buildings", Advanced Materials Research, Vol. 450, No. 451, 2012, pp. 1489-1492.
[16] J.W. Tang, Y.M. Xie, P. Felicetti, J.Y. Tu and J.D. Li, "Numerical simulations of wind drags on straight and twisted polygonal buildings", The Structural Design of Tall and Special Buildings, Vol. 22, 2013, pp. 62-73.
[17] K.S. Moon, "Studies on various structural system design options for twisted tall buildings and their performances", The Structural Design of Tall and Special Buildings, Vol. 23, No. 5, 2014, pp. 319-333.
[18] D. Lee, and S. Shin, "Advanced high strength steel tube diagrid using TRIZ and nonlinear pushover analysis", Journal of Constructional Steel Research, Vol. 96, 2014, pp. 151-158.
[19] J. Xie, "Aerodynamic optimization of super-tall buildings and its effectiveness assessment", Journal of Wind Engineering and Industrial Aerodynamics, Vol. 130, 2014, pp. 88-98.
                                                                                                        
[20] K.S. Moon, "Comparative evaluation of structural systems for tall buildings: diagrids vs. outrigger structures", International Journal of Engineering Technology Science and Research, Vol. 4, No. 12, 2017, pp.1187-1194.
[21] X. Lu, Y. Tian, S. Cen, H. Guan, L. Xie, and L. Wang, “A high-performance quadrilateral flat shell element for seismic collapse simulation of tall buildings and its implementation in OpenSees,” J. Earthq. Eng., vol. 22, no. 9, pp. 1662–1682, 2018.
[22] J. Shen, X. Ren, Y. Zhang, and J. Chen, “Nonlinear dynamic analysis of frame-core tube building under seismic sequential ground motions by a supercomputer,” Soil Dyn. Earthq. Eng., vol. 124, pp. 86–97, 2019.
[23] Q. Zhu, S. Zou, and B. Yang, “Seismic Performance Analysis of RC Frame Core Tube Structure Considering Floor Parameters,” in Innovative Computing, Springer, 2020, pp. 1567–1573.
[24] Y. Cheng, Y.-R. Dong, G.-L. Bai, and Y.-Y. Wang, “IDA-based seismic fragility of high-rise frame-core tube structure subjected to multi-dimensional long-period ground motions,” J. Build. Eng., vol. 43, p. 102917, 2021.
[25] Jalilkhani, M., Ghasemi, S. H., & Danesh, M. “A multi-mode adaptive pushover analysis procedure for estimating the seismic demands of RC moment-resisting frames.” Engineering Structures, 213, 2020, 110528.
[26] Jahangir, H., Bagheri, M. “Evaluation of Seismic Response of Concrete Structures Reinforced by Shape Memory Alloys” International Journal of Engineering, 2020, 33(3): 410-418. DOI: 10.5829/IJE.2020.33.03C.05.
[27] Triller, J., Immel, R., Timmer, A., & Harzheim, L. (2021). “The difference-based equivalent static load method: an improvement of the ESL method’s nonlinear approximation quality.” Structural and Multidisciplinary Optimization, 2021, 1-16.
[28] Bagheri, M., Chahkandi, A., and Jahangir, H., "Seismic Reliability Analysis of RC Frames Rehabilitated by Glass Fiber-Reinforced Polymers" International Journal of Civil Engineering, 2019, 17: 1785–1797. DOI: 10.1007/s40999-019-00438-x.