مرور و کاربرد روش یادگیری عمیق در طبقه‌بندی مصالح دانه‌ای بتن و خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری مهندسی خاک و پی، دانشکده مهندسی عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

2 دانشجوی دکتری مهندسی سازه‌های هیدرولیکی، دانشکده مهندسی عمران، دانشگاه قم، قم، ایران

3 استاد دانشکده مهندسی راه آهن دانشگاه علم و صنعت ایران.

چکیده

روش‌ پایه برای تعیین خصوصیات مهندسی خاک و سنگ‌دانه‌های بتن، طبقه‌بندی آن‌ها به روش مکانیکی آنالیز الک است که روندی زمان‌بر و گاهی پر هزینه دارد. در این مقاله با کاربرد روش پردازش تصویر مبتنی بر یادگیری عمیق، عملاً نیاز به دخالت کاربر برای پردازش تصاویر به حداقل و سرعت و دقت طبقه‌بندی مصالح افزایش یافته است که این موضوع می‌تواند به افزایش بهره‌وری در پروژه‌ها کمک نماید. بدین منظور نمونه‌های مصالح از پروژه‌های مختلف در سطح شهر تهران جمع‌آوری شده و از آن‌ها عکس‌هایی در شرایط مشخص تهیه گردید. برای تعیین دقیق طبقه‌بندی مصالح، نمونه‌ها به روش آنالیز الک دانه‎‌بدی شدند. با این اطلاعات، شبکه‌های‌ یادگیری عمیق AlexNet و GoogleNet بررسی، تنظیم و آموزش داده شده‌اند. برای تعیین پارامترهای مدل از حساسیت‌سنجی استفاده شد. بر این اساس استفاده از حدود 80-90 درصد تصاویر گرفته شده برای آموزش مدل و سایر تصاویر برای بررسی دقت آن مناسب تشخیص داده شد. نتایج آنالیز نشان داد که با استفاده از این روش دقت صحت‌سنجی به حدود 100% می‌رسد. همچنین درصد توانایی مدل برای شناسایی طبقه‌بندی تصاویر نمونه‌های جدید در حدود 85% است. با افزایش داده‌های ورودی برای آموزش مدل می‌توان به دقتی به مراتب بالاتر نیز دست یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review and Application of Deep Learning Method for Classification of Concrete Aggregates and Soil

نویسندگان [English]

  • S. M. Amin Ghotbi 1
  • Mahyar Pourlak 2
  • Morteza Esmaeili 3
1 PhD, Department of Civil Engineering, K.N. Toosi University of Technology, Tehran, Iran. E-mail address: ghotbi@mail.kntu.ac.ir
2 PhD Candidate, Department of Civil Engineering, Qom University, Qom, Iran
3 Professor of Railway Engineering Iran University of Science and Technology
چکیده [English]

Mechanical sieve analysis is a common method for determining concrete aggregates and soil classification. For facilitation and acceleration of this method, this paper reviews image processing and deep learning methods used in geotechnical and civil engineering applications. Combination of deep learning with image processing can result in a robust, human-independent approach (in terms of experience and recognition power), resulting in faster and accurate results. To better understand the performance of such methods, two convolutional neural network (CNN) architectures (e.g. AlexNet or GoogleNet) were evaluated for their capability in automatic feature extraction and image classification. It was observed that the accuracy of these networks in prediction of aggregate class is dependent on ratio of the number of training samples to the whole dataset size, epoch number and mini batch size. The number of training images between 80-90% of the total dataset was found to be suitable and a minimum of 10 epoch is required to obtain the maximum validation accuracy. Using this model, a validation accuracy of up to 100% was reachable. Furthermore, the model was capable to predict about 85% of new images correctly. The future improvement of this method can be associated to increasing its efficiency in training process by using optimization approaches.

کلیدواژه‌ها [English]

  • Soil and Aggregate Classification
  • Image Processing
  • Deep Learning
[1] Withee, J. (2016). FHWA Highway Materials Engineering Course, Federal Highway Administration, Washington, DC.
[2] Mora, C. F., Kwan, A. K. H., Chan, H. C. (1998). Particle size distribution analysis of coarse aggregate using digital image processing. Cement and Concrete Research, 28(6), 921-932.
[3] Han, J., Wang, K., Wang, X., Monteiro, P. J. (2016). 2D image analysis method for evaluating coarse aggregate characteristic and distribution in concrete. Construction and Building Materials, 127, 30-42.
[4] Mouret, M., Ringot, E., & Bascoul, A. (2001). Image analysis: a tool for the characterisation of hydration of cement in concrete–metrological aspects of magnification on measurement. Cement and Concrete Composites, 23(2-3), 201-206.
[5] Baddeley, A., Jensen, E. B. V. (2004). Stereology for statisticians. CRC Press.
[6] Ozen, M., Guler, M. (2014). Assessment of optimum threshold and particle shape parameter for the image analysis of aggregate size distribution of concrete sections. Optics and Lasers in Engineering, 53, 122-132.
[7] Yang, J., Yu, W., Fang, H. Y., Huang, X. Y., & Chen, S. J. (2018). Detection of size of manufactured sand particles based on digital image processing. PloS one, 13(12).
[8] Barman, U., & Choudhury, R. D. (2019). Soil texture classification using multi class support vector machine. Information Processing in Agriculture.
[9] Gui, X., Zheng, X. Y., Song, J. W., & Peng, X. (2011). Automation bridge design and structural optimization. In Applied Mechanics and Materials (Vol. 63, pp. 457-460). Trans Tech Publications Ltd.
[10] Alqedra, M., Arafa, M., & Ismail, M. (2011). Optimum cost of prestressed and reinforced concrete beams using genetic algorithms. Journal of artificial intelligence, 4(1).
[11] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).
[12] Meziane, S., Bahi, L., & Ouadif, L. (2018, November). Automatic Recognition of Pavement Degradation: Case of Rif Chain. In International Congress and Exhibition" Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology" (pp. 135-144). Springer, Cham.
[13] de Oliveira Morais, P. A., de Souza, D. M., de Melo Carvalho, M. T., Madari, B. E., & de Oliveira, A. E. (2019). Predicting soil texture using image analysis. Microchemical Journal, 146, 455-463.
[14] Cortina-Januchs, M. G., Quintanilla-Dominguez, J., Vega-Corona, A., Tarquis, A. M., & Andina, D. (2011). Detection of pore space in CT soil images using artificial neural networks. Biogeosciences, 8(2), 279-288.
[15] Azizi, A., Gilandeh, Y. A., Mesri-Gundoshmian, T., Saleh-Bigdeli, A. A., & Moghaddam, H. A. (2020). Classification of soil aggregates: A novel approach based on deep learning. Soil and Tillage Research, 199, 104586.
[16] ASTM D6913-04, “standard test methods for particle size distribution of soils,” American Society for Testing of Materials, Pennsylvania, PA, USA
[17] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).
[18] Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
[19] Shu, M. (2019). Deep learning for image classification on very small datasets using transfer learning.
[20] Alqahtani, A., & Whyte, A. (2016). Estimation of life-cycle costs of buildings: regression vs artificial neural network. Built Environment Project and Asset Management.
[21] Newman, M. E. (2005). Power laws, Pareto distributions and Zipf's law. Contemporary physics, 46(5), 323-351.
[22] Sitton, J. D., Zeinali, Y., & Story, B. A. (2017). Rapid soil classification using artificial neural networks for use in constructing compressed earth blocks. Construction and Building Materials, 138, 214-221.
[23] Srivastava, P., Shukla, A., & Bansal, A. (2021). A comprehensive review on soil classification using deep learning and computer vision techniques. Multimedia Tools and Applications, 1-28.