مروری بر خصوصیات بتن فوق توانمند و کاربرد آن در مهندسی پل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد دانشکده مهندسی عمران دانشگاه تهران و رئیس انستیتو مصالح ساختمانی

2 استاد دانشگاه تهران

3 دانشجوی کارشناسی ارشد مهندسی زلزله، دانشکده مهندسی عمران دانشگاه تهران

چکیده

لزوم توجه ویژه به توسعه پایدار در رشته مهندسی عمران به منظور پیشرفت جوامع امروزی، بتن را به عنوان پرمصرف‌ترین ماده در این زمینه، مورد توجه محققین قرار داده است. در این راستا بتن فوق توانمند الیافی در جایگاه یکی از جدیدترین نوآوری‌ها در عرصه تکنولوژی بتن مورد توجه ویژه قرار گرفته است. هدف نوشتار پیش رو 1ـ آشنایی با ویژگی‌های برجسته بتن فوق توانمند که بکارگیری آن را در پروژه‌های ساخت و ساز، بهسازی و مقاوم‌سازی کارآمد می‌کند و 2ـ ترویج استفاده از بتن فوق توانمند در مهندسی پل در عرصه ملی با تکیه بر مطالعات همه‌جانبه داخلی برای بومی‌سازی آن می‌باشد. سعی شده است که گزارشی جامع از نوآوری‌ها و تجارب حاصله در حوزه بکارگیری بتن فوق توانمند در صنعت پل طی دو دهه اخیر در اقصی نقاط جهان ارائه و ضمن اشاره به محدودیت‌های کلیدی استفاده گسترده این مصالح برای احداث و نگهداری پل‌ها، سمت و سوی اصلی تحقیقات آینده بررسی شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A review on characteristics of Ultra-High Performance Concrete (UHPC) and its application in bridge engineering

نویسندگان [English]

  • Mohammad Shekarchi 1
  • Khosro Bargi 2
  • Amirmahdi Rabiee 3
1 Professor, School of civil engineering, University of Tehran and President of Construction Material Institute (CMI)
2 Professor, School of civil engineering, University of Tehran
3 M.Sc. of earthquake engineering, School of civil engineering, University of Tehran
چکیده [English]

The necessity of attention to the sustainable development in civil engineering for the progress of modern societies has highlighted concrete as the most widely used construction material for researchers. In this way, Ultra High Performance Concrete (UHPC) has been highly appreciated as one of the newest inventions in the field of concrete technology. The purpose of this article is to: 1- depict outstanding properties of UHPC that make its utilization in construction, rehabilitation and strengthening projects efficient and 2- promote the application of UHPC in bridge engineering in the national scale relying on extensive domestic studies in order to localize it. Much effort has been made to present a comprehensive report on innovations and gained experiences in the field of using UHPC in the bridge industry during the last two decades in all parts of the world and investigate the main direction of future research pointing to the key constraints of the widespread use of this material for constructing and maintaining bridges.

کلیدواژه‌ها [English]

  • : Ultra-High Performance Concrete (UHPC)
  • Bridge Engineering
  • Rehabilitation and Strengthening
  • Mix Design
 
[1] Bétons Fibrés à Ultra-Hautes Performances, Recommandations Provisoires. (2002). SETRA-AFGC, Groupe de travail BFUP.
[2] Richard, P., & Cheyrezy, M. (1995). Composition of reactive powder concretes. Cement and concrete research, 25(7), 1501-1511.
[3] Gowripalan, N. and Gilbert, R.I. (2000). Design Guidelines for Ductal Prestressed Concrete Beams. University of New South Wales.
[4] JSCE Guidelines for Concrete No. 9, Recommendations for Design and Construction of Ultra High Strength Fiber Reinforced Concrete Structures (Draft). (2006). Japan Society of Civil Engineers (JSCE).
[5] AASHTO LRFD Bridge Design Specifications, Sixth Edition. (2012). American Association of State Highway and Transportation Officials.
[6] Russell, H. G., Graybeal, B. A., & Russell, H. G. (2013). Ultra-high performance concrete: A state-of-the-art report for the bridge community (No. FHWA-HRT-13-060).
[7] Talebinejad, I., Bassam, S. A., Iranmanesh, A., & Shekarchizadeh, M. (2004, September). Optimizing mix proportions of normal weight reactive powder concrete with strengths of 200–350 MPa. In Proceedings of the International Symposium on UHPC, Kassel, Germany (pp. 133-141).
[8] Taghaddos, H., Mahmoudzadeh, F., Pourmoghaddam, A., & Shekarchizadeh, M. (2004, September). Prediction of compressive strength behaviour in RPC with applying an adaptive network-based fuzzy interface system. In Proceedings of the International Symposium on Ultra High Performance Concrete, Kassel, Germany (pp. 273-284).
[9] ASTM C1437. (2013). Standard test method for flow of hydraulic cement mortar. American Society for Testing and Materials.
[10] ASTM C33. (2018). Standard Specification for Concrete Aggregates. American Society for Testing and Materials.
[11] Graybeal, B.A. (2005). Characterization of the behavior of ultra-high performance concrete. PhD thesis, University of Maryland.
[12] حاجی اسمعیلی، امیر. (1394). بررسیآزمایشگاهیوعددیرفتارتیرهایساختهشدهازبتنفوق توانمند. رشته مهندسی سازه. گروه مهندسی عمران . دانشکده فنی. دانشگاه تهران.
[13] ASTM C39. (2020). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. American Society for Testing and Materials.
[14] ASTM, C78. (2018). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). American Society for Testing and Materials.
[15] ASTM C496. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. American Society for Testing and Materials.
[16] ASTM, C190. (1985). Standard Test Method for Tensile Strength of Hydraulic Cement Mortars. American Society for Testing and Materials.
[17] ASTM C469. (2014). Standard Test Method for Static Modulus of Elasticity and Poison’s Ratio of Concrete in Compression. American Society for Testing and Materials.
[18] ASTM C801. (1998). Standard Test Method for Determining the Mechanical Properties of Hardened Concrete Under Triaxial Loads (withdrawn 2004). American Society for Testing and Materials.
 [19]عربعلی ، پورا. (1390). مطالعه عددی رفتار بتن‌های الیافی توانمند بارگذاری‌شده به صورت سه محوری با مدل‌های رفتاری موجود. رشته سازه‌های هیدرولیکی. گروه مهندسی عمران . دانشکده فنی. دانشگاه تهران.
[20] Shao-min Song, Cui-xia Wei. (2006). Study on Durability of Reactive Powder Concrete. J. Concr, 2, 72–73.
[21] Li Li, Ying Wang, Wen-zhong Zheng. (2008). State of the art of durability of reactive powder concrete. Indust. Constr, S1, 773–776.
[22] Graybeal, B., & Tanesi, J. (2007). Durability of an ultrahigh-performance concrete. Journal of materials in civil engineering, 19(10), 848-854.
[23] Bonneau, O., Lachemi, M., Dallaire, E., Dugat, J., & Aïtcin, P. C. (1997). Mechanical properties and durability of two industrial reactive powder concretes. ACI Materials journal, 94(4), 286-290.
[24] Piérard, J., Dooms, B., & Cauberg, N. (2016). Durability evaluation of different types
of UHPC. Newsletter.
[25] So, H. S., Yi, J. B., Khulgadai, J., & So, S. Y. (2014). Properties of strength and pore
structure of reactive powder concrete exposed to high temperature. ACI Mater. J, 111(3),335-346.
[26] Peng, G. F., Kang, Y. R., Huang, Y. Z., Liu, X. P., & Chen, Q. (2012). Experimental
research on fire resistance of reactive powder concrete. Advances in Materials Science
and Engineering, 2012.
[27] Pimienta, P., & Chanvillard, G. (2004, April). Retention of the mechanical performances of Ductal® specimens kept in various aggressive environments. In Conference on fib Symposium" Concrete structures: the challenge of creativity", Avignon, France.
[28] خدابنده، پیمان. (1398). بررسی آزمایشگاهی استفاده از روکش بتن فوق توانمند برای حفاظت از خوردگی میلگرد سازه‌های بتنی توسط یون کلرید. پایان‌نامه کارشناسی ارشد. رشته مهندسی سازه. گروه مهندسی عمران . دانشکده فنی. دانشگاه تهران.
[29] BS 1881: Part 122. (2011). Testing concrete-Method for determination of water absorption. British Standard, 3(2014), 420–457.
[30] BS EN 12390-8. (2019). Testing hardened concrete-Depth of penetration of water under pressure. British-Adopted European Standard.
[31] ASTM C1202. (2012). Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. American Society for Testing and Materials.
[32] AFPC-AFREM. (1997). Détermination de la Masse Volumique Apparente et de la Porosité Accessible à l’Eau, Méthodes Recommandées pour la Mesure des Grandeurs Associées à la Durabilité. Compte-rendu des Journées Techniques, Toulouse, pp. 121-124.
[33] Lee, G. C., Huang, C., Song, J., & O'Connor, J. S. (2014). Seismic Performance Evaluation of Precast Girders with Field-Cast Ultra High Performance Concrete (UHPC) Connections. MCEER.
[34] Ju, Y. Z., Wang, D. H., & Bai, J. (2013). Seismic performance of reactive powder concrete columns. Journal of Harbin Institute of Technology, 45(8), 111-116.
[35] Tong, X. L., Fang, Z., & Luo, X. (2016). Experimental study on seismic behavior of reactive powder concrete shear walls. Journal of Building Structures, 37(01), 21-30.
[36] Yoo, D. Y., & Banthia, N. (2017). Mechanical and structural behaviors of ultra-high-performance fiber-reinforced concrete subjected to impact and blast. Construction and building materials, 149, 416-431.
[37] خان احدی، رضا. (1397). بررسی عملکرد پانل‌های بتن های فوق توانمند در برابر ضربه. پایان‌نامه کارشناسی ارشد. رشته مهندسی سازه. گروه مهندسی عمران . دانشکده فنی. دانشگاه تهران.
[38] فرنام، یعقوب. (1386). بررسی آزمایشگاهی و شبیه‌سازی رفتار پانل‌های بتن الیافی توانمند در برابر ضربه. پایان‌نامه کارشناسی ارشد. رشته سازه‌های هیدرولیکی. گروه مهندسی عمران . دانشکده فنی. دانشگاه تهران.
[39] Habel, K., Denarié, E., & Brühwiler, E. (2007). Experimental Investigation of Composite Concrete and Conventional Concrete Members. ACI Structural Journal, (104), 93–101.
[40] Zhu, Y., Zhang, Y., Hussein, H. H., & Chen, G. (2020). Flexural strengthening of reinforced concrete beams or slabs using ultra-high performance concrete (UHPC): A state of the art review. Engineering Structures, 205, 110035.
[41] جعفری‌نژاد، سهیل. (1396). بررسی آزمایشگاهی مقاومت پیوستگی بین بتن معمولی و بتن فوق توانمند. پایان‌نامه کارشناسی ارشد. رشته مهندسی سازه. گروه مهندسی عمران . دانشکده فنی. دانشگاه تهران.
[42] ASTM C1583. (2004). Standard Test Method for Tensile Strength of Concrete Surfaces and the Bond Strength or Tensile Strength of Concrete Repair and Overlay Materials by Direct Tension (Pull-off Method). American Society for Testing and Materials.
[43] ASTM C882. (2013). Standard Test Method for Bond Strength of Epoxy-Resin Systems Used with Concrete by Slant Shear. American Society for Testing and Materials.
[44] ACI 546.3R-06. (2006). Guide for the selection of materials for the repair of concrete. American Concrete Institute (ACI).
[45] Habert, G., Denarié, E., Šajna, A., & Rossi, P. (2013). Lowering the global warming impact of bridge rehabilitations by using Ultra High Performance Fibre Reinforced Concretes. Cement and Concrete Composites, 38, 1–11.
[46] Hajiesmaeili, A., Pittau, F., Denarié, E., & Habert, G. (2019). Life Cycle Analysis of Strengthening Existing RC Structures with R-PE-UHPFRC. Sustainability, 11(24), 6923.
[47] Dong, Y. (2018). Performance assessment and design of ultra-high performance concrete (UHPC) structures incorporating life-cycle cost and environmental impacts. Construction and Building Materials, 167, 414–425.
[48] Almansour, H., & Lounis, Z. (2010). Innovative design approach of precast-prestressed girder bridges using ultra high performance concrete. Canadian Journal of Civil Engineering, 37(4), 511–521.
[49] Fan, W., Shen, D., Zhang, Z., Huang, X., & Shao, X. (2020). A novel UHPFRC-based protective structure for bridge columns against vehicle collisions: Experiment, simulation, and optimization. Engineering Structures, 207, 110247.
[50] Fan, W., Guo, W., Sun, Y., Chen, B., & Shao, X. (2018). Experimental and numerical investigations of a novel steel-UHPFRC composite fender for bridge protection in vessel collisions. Ocean engineering, 165, 1-21.
[51] Zou, X., & Wang, J. (2018). Experimental study on joints and flexural behavior of FRP truss-UHPC hybrid bridge. Composite Structures, 203, 414-424.
[52] Ren, L., Fang, Z., & Wang, K. (2019). Design and behavior of super-long span cable-stayed bridge with CFRP cables and UHPC members. Composites Part B: Engineering, 164, 72-81.
[53] Zhou, M., Lu, W., Song, J., & Lee, G. C. (2018, October 20). Application of Ultra-High Performance Concrete in bridge engineering. Construction and Building Materials. Elsevier Ltd.
[54] Graybeal, B., Brühwiler, E., Kim, B. S., Toutlemonde, F., Voo, Y. L., & Zaghi, A. (2020). International Perspective on UHPC in Bridge Engineering. Journal of Bridge Engineering25(11), 04020094.
[55] Yuan, Y., Wu, C., & Jiang, X. (2019). Experimental study on the fatigue behavior of the orthotropic steel deck rehabilitated by UHPC overlay. Journal of Constructional Steel Research, 157, 1-9.
[56] Shao, X., Qu, W., Cao, J., & Yao, Y. (2018). Static and fatigue properties of the steel-UHPC lightweight composite bridge deck with large U ribs. Journal of Constructional Steel Research, 148, 491-507.
[57] Zhang, X., Li, X., Liu, R., Hao, C., & Cao, Z. (2020). Dynamic properties of a steel–UHPC composite deck with large U-ribs: Experimental measurement and numerical analysis. Engineering Structures, 213, 110569.
[58] Zhang, Y., Zhu, Y., Yeseta, M., Meng, D., Shao, X., Dang, Q., & Chen, G. (2019). Flexural behaviors and capacity prediction on damaged reinforcement concrete (RC) bridge deck strengthened by ultra-high performance concrete (UHPC) layer. Construction and Building Materials, 215, 347-359.