مطالعه آزمایشگاهی نقش الیاف هیبریدی دو‌گانه کوپلیمری و نانو‌سیلیس بر مقاومت‌های فشاری، کششی و خمشی بتن ژئوپلیمری بر پایه متاکائولن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی عمران- سازه، گروه مهندسی عمران، سازه و ژئوتکنیک، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 استادیار گروه مهندسی عمران، سازه و ژئوتکنیک، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

3 استادیار گروه مهندسی مواد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

4 استادیار گروه مهندسی عمران، سازه و ژئوتکنیک، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

5 دانشجوی کارشناسی ارشد مهندسی عمران- زلزله، گروه مهندسی عمران، سازه و ژئوتکنیک، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

بتن ژئوپلیمری در سال‌های اخیر به عنوان یک جایگزین سبز برای بتن پرتلند مطرح شده است که می‌تواند از اثرات منفی زیست محیطی تولید سیمان پرتلند بکاهد. در این مقاله اثر الیاف هیبریدی دوگانه کوپلیمری ونانوسیلیس بر مقاومت‌های فشاری، کششی و خمشی بتن ژئوپلیمری بر پایه متاکائولن مورد مطالعه آزمایشگاهی قرار گرفت. ابتدا آزمایش‌های اولیه به منظور رسیدن به طرح اختلاط بهینه انجام شد سپس به منظور بررسی رفتار بتن ژئوپلیمری الیافی بر پایه متاکائولن الیاف در نسبت‌های مختلف و همراه با نانوسیلیس به طرح اختلاط بتن اضافه و نمونه‌ها ساخته و عمل‌آوری شدند. از نمونه‌ها آزمون مقاومت کششی غیر‌مستقیم و مقاومت خمش سه‌ نقطه‌ای گرفته شد. نتایج نشان داد استفاده از الیاف هیبریدی و نانوسیلیس سبب افزایش مقاومت‌های فشاری، کششی و خمشی بتن ژئوپلیمری می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Study of the Effect of 2-Element Hybrid Copolymer Fibers and Nano-Silica Particles on Compressive, Tensile and Flexural Strengths of Metakaolin-Based Geopolymer Concrete

نویسندگان [English]

  • Amir Bahador Moradikhou 1
  • Mir Hamid Hosseini 2
  • Azam Mousavi Kashi 3
  • Fereshteh Emami 4
  • Alireza Esparham 5
1 MSc. Student of civil, structural, and geotechnics engineering department, Islamic Azad University, Science and Research branch, Tehran, Iran
2 Assistant professor of civil, structural, and geotechnics engineering department, Islamic Azad University, Science and Research branch, Tehran, Iran
3 Assistant professor of materials engineering department, Islamic Azad University, Science and Research branch, Tehran, Iran
4 Assistant professor of civil, structural, and geotechnics engineering department, Islamic Azad University, Science and Research branch, Tehran, Iran
5 MSc. Student of civil, structural, and geotechnics engineering department, Islamic Azad University, Science and Research branch, Tehran, Iran
چکیده [English]

In recent years, geopolymers, as a new class of green cement binders, have gained significant attention as an environmental-friendly alternative to ordinary Portland cement. In this paper, the effect of 2-element hybrid fibers and nano-silica particles on compressive, tensile and flexural strengths of metakaolin-based geopolymer concrete, were studied. First, Preliminary tests were conducted to reach the optimum mixture designs. Then, fibers were added in various ratios with nano silica particles to the concrete mixtures and geopolymer specimens were prepared to study the behavior of geopolymer fibers reinforced metakaolin-based concrete. After curing, specimens were subjected to the indirect tensile and 3-pointflexural strengths tests. The test results showed that using 2-element hybrid fibers and nano-silica particles increases the compressive, tensile and flexural strengths of geopolymer concrete.

کلیدواژه‌ها [English]

  • Geopolymer
  • Fibers Reinforced Geopolymer Concrete
  • Hybrid Fibers
  • Metakaolin
  • Nano-Silica
[1] Malhotra VM. (1999). Making concrete ‘greener’ with fly ash. ACI Concrete International, 21:61-66.
[2] Davidovits J. (1994). Global warming impact on the cement and aggregates industries. World resource review, 6:263–278.
[3] Malhotra VM. (2006). Reducing CO2 Emissions. ACI Concrete International, 28:42-45.
[4] McCaffrey R. (2002). Climate Change and the Cement Industry. Global Cement and Lime Magazine, (Environmental Special Issue):15-19.
[5] Alzeer M, MacKenzie K. (2013). Synthesis and mechanical properties of novel composites of inorganic polymers (geopolymers) with unidirectional natural flax fibres (phormium tenax). Applied Clay Science, 75-76:148-152.
[6] Barbosa VFF, MacKenzie KJD, Thaumaturgo C. (2000). Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. International Journal of Inorganic Materials, 2:309-317.
[7] Davidovits J. (1993). Geopolymer cements to minimise carbon-dioxide greenhouse-warming. Ceramic Transactions, 37:165-182.
[8] Davidovits J. (1987). Ancient and modern concretes: what is the real difference?, Concrete International, 9:23-29.
[9] van Jaarsveld JGS, van Deventer JSJ, Lukey GC. (2002). The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. Chemical Engineering Journal, 89:63-73.
[10] DeSilva P, Sagoe-Crenstil K, Sirivivatnanon V. (2007). Kinetics of geopolymerization: role of Al2O3 and SiO2. Cement and Concrete Research, 37:512-518.
[11] Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ. (2007). Geopolymer technology: the current state of the art. Journal of Materials Science, 42:2917-2933.
[12] Xu H, van Deventer JSJ. (2000). The Geopolymerisation of Alumino-Silicate Minerals. International Journal of Mineral Processing, 59:247-266.
[13] Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV. (2004). On the Development of Fly Ash-Based Geopolymer Concrete. ACI Materials Journal, 101:467-472.
[14] Duxson P, Provis JL, Lukey GC, van Deventer JSJ. (2007). The role of inorganic polymer technology in the development of ‘green concrete’. Cement and Concrete Research, 37:1590-1597.
[15] Amnadnua K, Tangchirapat W, Jaturapitakkul C. (2013). Strength, water permeability, and heat evolution of high strength concrete made from the mixture of calcium carbide residue and fly ash. Materials & Design, 51:894-901.
[16] Lee WKW, van Deventer JSJ. (2002). The effects of inorganic salt contamination on the strength and durability of geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 211:115-126.
[17] Cheng TW, Chiu JP. (2003). Fire-resistant geopolymer produced by granulated blast furnace slag. Minerals Engineering, 16:205-210.
[18] Sakkas K, Panias D, Nomikos PP, Sofianos AI. (2014). Potassium based geopolymer for passive fire protection of concrete tunnels linings. Tunnelling and Underground Space Technology, 43:148-156.
[19] Sarker PK, Kelly S, Yao Z. (2014). Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Materials & Design, 63:584-592.
[20] Palomo A, Blanco-Varela MT, Granizo ML, Puertas F, Vazquez T, Grutzeck MW. (1999). Chemical stability of cementitious materials based on metakaolin. Cement and Concrete Research, 29:997-1004.
[21] Zhang M, Guo H, El-Korchi T, Zhang G, Tao M. (2013). Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Construction and Building Materials, 47:1468-1478.
[22] صدر ممتازی، ع.، کهنی خشکبیجاری، ر. و لطفی عمران، ر.، (1394)، خواص مهندسی و دوام بتن خود تراکم حاوی ذرات نانو سیلیس با رویکرد دستیابی به درصدهای بهینه الیاف، مجله علمی پژوهشی تحقیقات بتن، 8 (2): 19-34.
[23] Naaman AE, Wongtanakitcharoen T, Hauser G. (2005). Influence of Different Fibers on Plastic Shrinkag Cracking of Concrete. ACI Materials Journal, 102:49-58.
[24] ACI Committee 544, Measurements of Properties of Fiber Reinforced Concrete, ACI Materials Journal, 1996.
[25] Soroushian P. (1986). Secondary reinforcemrnt adding cellulose fibers. ACI Concrete International: 28-38.
[26] Qing Y, Zenan Z, Deyu K, Rongshen C. (2007). Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Construction and Building Materials, 21:539-545.
[27] Collepardi M, Ogoumah Olagot J, Troli R, Simonelli F, Collepardi S. (2007). Combination of silica fume, Fly Ash and Amorphous Nano Silicain Super plasticized High Performance Concretes, Enco. In: Engineering Concrete. PonzanoVeneto, Italy.
[28] Li G. (2004). Properties of high-volume fly ash concrete incorporating nano-SiO2. Cement and Concrete Research, 34:1043-1049.
[29] Nili M, Afroughsabet V. (2010). Combined Effect of Silica Fume and Steel Fibers on the Impact Resistance and Mechanical Properties of Concrete. International Journal of Impact Engineering, 37:879-886.
[30] Vandewalle L. (2008). Hybrid Fiber Reinforced Concrete. In: Int'l Conference Concrete: Construction's Sustainable Option. Dundee, UK, 11-22.
[31] Gao X, Yu QL, Yu R, Brouwers HJH. (2017). Evaluation of hybrid steel fiber reinforcement in high performance geopolymer composites. Materials and Structures, 50:165.
[32] Asrani NP, Murali G, Parthiban K, Surya K, Prakash A, Rathika K, Chandru U. (2019). A feasibility of enhancing the impact resistance of hybrid fibrous geopolymer composites: Experiments and modelling. Construction and Building Materials, 203:56-68.
[33] Alberti MG, Enfedaque A, Gálvez JC, Cánovas MF, Osorio IR. (2014). Polyolefin fiber-reinforced concrete enhanced with steel-hooked fibers in low proportions. Materials & Design, 60:57-65.
[34] Han T-Y, Lin W-T, Cheng A, Huang R, Huang C-C. (2012). Influence of polyolefin fibers on the engineering properties of cement-based composites containing silica fume. Materials & Design, 37:569-576.
[35] Deng Z, Shi F, Yin S, Tuladhar R. (2016). Characterisation of macro polyolefin fibre reinforcement in concrete through round determinate panel test. Construction and Building Materials, 121:229-235.
[36] Celik A, Yilmaz K, Canpolat O, Al-mashhadani MM, Aygörmez Y, Uysal M. (2018). High-temperature behavior and mechanical characteristics of boron waste additive metakaolin based geopolymer composites reinforced with synthetic fibers. Construction and Building Materials, 187:1190-1203.
[37] Momin AK, and Sawant RM. (2017). Evaluation of Split Tensile Strength of Fibre Reinforced MetakaolinBased Geopolymer Concrete. Journal of Geotechnical Studies 2 (2):1-9.
[38] Zhao W, Wang Y, Wang x, and Wu D. (2016). Fabrication, mechanical performance and tribological behaviors of polyacetal-fiber-reinforced metakaolin-based geopolymeric composites. Ceramics International 42 (5):6329-6341.
[39] ASTM C127-15, Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate, ASTM International, West Conshohocken, PA, 2015.
[40] ASTM C128-15, Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate, ASTM International, West Conshohocken, PA, 2015.
[41] ASTM C136 / C136M-14, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM International, West Conshohocken, PA, 2014.
[42] British Standards Institution, Testing Concrete: Method for Determination of the Compressive Strength of Concrete Cubes, BS1881: Part116: 1983, London.
[43] ASTM C496 / C496M-17, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2017.
[44] ASTM C1018-97, Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading) (Withdrawn 2006), ASTM International, West Conshohocken, PA, 1997.
 [45] مرادی خو، ا. و اسپرهم، ع.، (1397). مطالعه آزمایشگاهی نقش محلول‌های قلیایی مختلف و کیورینگ بر مقاومت فشاری بتن ژئوپلیمری بر پایه کوره آهن‌گدازی، کنفرانس ملی تحقیقات بنیادین در عمران، معماری و شهر‌سازی، تهران.
 [46] قنبری، م.، هادیان، ع. و نوربخش، ا.، (1396). اثر افزودن نانو سیلیس بر خواص ژئوپلیمر های پایه متاکائولن، مجله علمی پژوهشی علم و مهندسی سرامیک، 6 (1): 95-85.
[47] Zhang Z-h, Yao X, Zhu H-j, Hua S-d, Chen Y. (2009). Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer. Journal of Central South University of Technology, 16:49-52.
[48] Hua-jun Z, Xiao Y, Zu-hua Z. (2007). Optimum activated temperature of kaolin. JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 14:131-134.
[49] Yunsheng Z, Wei S, Zongjin L. (2006). Impact behavior and microstructural characteristics of PVA fiber reinforced fly ash-geopolymer boards prepared by extrusion technique. Journal of Materials Science, 41:2787-2794.