بررسی اثر استئارات کلسیم بر مشخصات بتن خودتراکم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مدرس حق التدریس

2 دانشجوی دانشگاه شهاب دانش

3 عضو هیات علمی مرکز تحقیقات راه، مسکن و شهرسازی

4 مدیر واحد تحقیق و توسعه شرکت دانش بنیان نانو بتن امین

چکیده

انتقال رطوبت و یون‌های مخرب همراه با آن ازجمله عوامل اصلی تهدیدکننده دوام سازه‌های بتنی می‌باشند. افزودنی‌های نم بند مانند استئارات کلسیم می‌توانند با ایجاد یک‌لایه آب‌گریز در سطح منافذ مویینه، ورود آب به داخل بتن را محدود کرده و بدین طریق دوام سازه‌های بتنی را بهبود بخشند. بر این اساس، در این پژوهش اثر استئارات کلسیم بر مشخصات بتن خودتراکم در حالت‌های تازه و سخت‌شده بررسی شده است. نتایج این مطالعه نشان می‌دهد که در حالت بتن تازه، چگالی، قابلیت پرکنندگی و قابلیت عبور بتن خودتراکم در صورت استفاده از این افزودنی کاهش می‌یابد، اما این ماده بر افت اسلامپ بتن خودتراکم اثر محسوسی نمی‌گذارد. یافته‌های پژوهش در بخش مشخصات مکانیکی حاکی از کاهش در مقاومت فشاری و چگالی بتن سخت‌شده می‌باشد. نهایتاً، بررسی پارامترهای دوامی نشان می‌دهد که گرچه این مواد تأثیر قابل‌ملاحظه‌ای بر مقاومت الکتریکی، جذب آب کلی و ضریب مهاجرت تسریع‌شده یون‌های کلراید نمی‌گذارند، اما استفاده این مواد، جذب آب مویینه و جذب آب حجمی را به‌شدت کاهش می‌دهد؛ بطوریکه، در صورت استفاده از 7 کیلوگرم بر مترمکعب استئارات کلسیم، عمق نهایی نفوذ مویینه، جذب آب نیم‌ساعته و سه‌روزه را به ترتیب 60%، 65% و 13% کاهش می‌یابند.

کلیدواژه‌ها


عنوان مقاله [English]

Influence of calcium stearate on the properties of self-consolidating concretes

نویسندگان [English]

  • ramin naseroleslami 1
  • Javad Bakhshi 2
  • Mehdi Nemati Chari 3
  • Mojtaba Hajmahdi 4
1 College teacher
2 Student of Shahab danesh university
3 Faculty member Concrete Technology Department; Road, Housing & Urban Development Research Center (BHRC)
4 Director of Research and Development Unit of Knowledge Foundation of Amino Nanotechnology
چکیده [English]

 
 
Moisture and water transfer into concrete can be considered as a major threat to the durability of concrete. Damp-proofing admixtures like calcium stearate (CS) can provide a water repellent layer along the capillary pores. As a result, water and moisture transfer into concrete will be restricted by means of this layer. Accordingly, this research studied the effects of CS on the properties fresh and hardened self-consolidating concrete (SCCs). The evaluation of fresh concrete properties demonstrated that the density of fresh SCCs, passing and filling ability were reduced due to incorporation of CS. Moreover, reduction in density and compressive strength of the hardened concrete can be deemed as the major impacts of CS on mechanical properties of SCCs. In fact, the last-mentioned parameters were decreased by respectively 4% and 30% due to inclusion of 7kg/m3 CS. Furthermore, utilizing CS can not be taken into account as a constructive approach to improve the durability chracteristics under hydrostatic condition. Because no considerable improvement can to be detected in the results of electrical resistivity and rapid chloride migration tests. Eventually, CS drastically enhanced the permeability of the concrete under non-hydrostatic condition. To be more precise, addition of   7kg/m3   of CS decreased the final depth of capillary water absorption, short and long-term water absorption by respectively 60%, 65% and 15%.
 

کلیدواژه‌ها [English]

  • : calcium stearate
  • damp-proofing admixtures
  • durability
  • self-consolidating concrete
  • water absorption

1.      

[1] F. A. Sabet, N. A. Libre, and M. Shekarchi, “Mechanical and durability properties of self consolidating high performance concrete incorporating natural zeolite, silica fume and fly ash,” Constr. Build. Mater., vol. 44, pp. 175–184, 2013.
[2] M. Nehdi, M. Pardhan, and S. Koshowski, “Durability of self-consolidating concrete incorporating high-volume replacement composite cements,” Cem. Concr. Res., vol. 34, no. 11, pp. 2103–2112, 2004.
[3] R. Saleh Ahari, T. K. Erdem, and K. Ramyar, “Permeability properties of self-consolidating concrete containing various supplementary cementitious materials,” Constr. Build. Mater., vol. 79, pp. 326–336, 2015.
[4] A. Mohan and K. M. Mini, “Strength and durability studies of SCC incorporating silica fume and ultra fine GGBS,” Constr. Build. Mater., vol. 171, pp. 919–928, 2018.
[5] M. M. Ranjbar, R. Madandoust, S. Y. Mousavi, and S. Yosefi, “Effects of natural zeolite on the fresh and hardened properties of self-compacted concrete,” Constr. Build. Mater., vol. 47, pp. 806–813, 2013.
[6] M. Nemati Chari, M. Shekarchi, M. H. Tadayon, and M. Moradian, “Prediction of chloride ingress into blended cement concrete: Evaluation of a combined short-term laboratory-numerical procedure,” Constr. Build. Mater., vol. 162, pp. 649–662, 2018.
[7] M. N. Chari, M. Shekarchi, J. Sobhani, and M. N. Chari, “The effect of temperature on the moisture transfer coefficient of cement-based mortars: An experimental investigation,” Constr. Build. Mater., vol. 102, pp. 306–317, 2016.
[8] A. Maryoto, “Resistance of Concrete with Calcium Stearate Due to Chloride Attack Tested by Accelerated Corrosion,” Procedia Eng., vol. 171, pp. 511–516, 2017.
[9] A. Maryoto, “Improving microstructures of concrete using Ca(C18H35O2)2,” Procedia Eng., vol. 125, pp. 631–637, 2015.
 [10]  C. Ma and B. Chen, “Properties of foamed concrete containing water repellents,” Constr. Build. Mater., vol. 123, pp. 106–114, 2016.
[11] L. Falchi, U. Müller, P. Fontana, F. C. Izzo, and E. Zendri, “Influence and effectiveness of water-repellent admixtures on pozzolana-lime mortars for restoration application,” Constr. Build. Mater., vol. 49, pp. 272–280, 2013.
[12] A. Izaguirre, J. Lanas, and J. I. Alvarez, “Effect of water-re
pellent admixtures on the behaviour of aerial lime-based mortars,” Constr. Build. Mater., vol. 25, no. 2, pp. 992–1000, 2011.
[13] A. Lagazzo, S. Vicini, C. Cattaneo, and R. Botter, “Effect of fatty acid soap on microstructure of lime-cement mortar,” Constr. Build. Mater., vol. 116, pp. 384–390, 2016.
[14] M. Lanzón and P. A. García-Ruiz, “Evaluation of capillary water absorption in rendering mortars made with powdered waterproofing additives,” Constr. Build. Mater., vol. 23, no. 10, pp. 3287–3291, 2009.
[15] M. Lanzón and P. A. García-Ruiz, “Effectiveness and durability evaluation of rendering mortars made with metallic soaps and powdered silicone,” Constr. Build. Mater., vol. 22, no. 12, pp. 2308–2315, 2008.
[16]  L. Falchi, E. Zendri, U. Müller, and P. Fontana, “The influence of water-repellent admixtures on the behaviour and the effectiveness of Portland limestone cement mortars,” Cem. Concr. Compos., vol. 59, pp. 107–118, 2015.
[17] M. Lanzón, E. Martínez, M. Mestre, and J. A. Madrid, “Use of zinc stearate to produce highly-hydrophobic adobe materials with extended durability to water and acid-rain,” Constr. Build. Mater., vol. 139, pp. 114–122, 2017.
[18] H. S. Wong, R. Barakat, A. Alhilali, M. Saleh, and C. R. Cheeseman, “Hydrophobic concrete using waste paper sludge ash,” Cem. Concr. Res., vol. 70, pp. 9–20, 2015.
[19] F. Tittarelli and G. Moriconi, “The effect of silane-based hydrophobic admixture on corrosion of galvanized reinforcing steel in concrete,” Corros. Sci., vol. 52, no. 9, pp. 2958–2963, 2010.
[20] F. Tittarelli, “Oxygen diffusion through hydrophobic cement-based materials,” Cem. Concr. Res., vol. 39, no. 10, pp. 924–928, 2009.
[21] F. Tittarelli and G. Moriconi, “Comparison between surface and bulk hydrophobic treatment against corrosion of galvanized reinforcing steel in concrete,” Cem. Concr. Res., vol. 41, no. 6, pp. 609–614, 2011.
[22] F. Tittarelli, M. Carsana, and M. L. Ruello, “Effect of hydrophobic admixture and recycled aggregate on physical-mechanical properties and durability aspects of no-fines concrete,” Constr. Build. Mater., vol. 66, pp. 30–37, 2014.
[23] Y. G. Zhu, S. C. Kou, C. S. Poon, J. G. Dai, and Q. Y. Li, “Influence of silane-based water repellent on the durability properties of recycled aggregate concrete,” Cem. Concr. Compos., vol. 35, no. 1, pp. 32–38, 2013.
[24] V. Corinaldesi, “Combined effect of expansive, shrinkage reducing and hydrophobic admixtures for durable self compacting concrete,” Constr. Build. Mater., vol. 36, pp. 758–764, 2012.
[25]  E. Vejmelková, D. Koňáková, M. Čáchová, M. Keppert, and R. Černý, “Effect of hydrophobization on the properties of lime-metakaolin plasters,” Constr. Build. Mater., vol. 37, pp. 556–561, 2012.
[26] ACI 212.3R-10.  Report on Chemical Admixtures for Concrete, Chapter 15: Permeability
      
]27[ رامین ناصرالاسلامی، مهدی نعمتی چاری، مجتبی حاجی مهدی، محمدعلی یعقوبی. بررسی اثر استئارات ها بر مشخصات مکانیکی و دوام بتن. اولین کنفرانس ملی دوام بتن اردیبهشت 97.
 
]28[ بتن- اندازه گیری جریان اسلامپ بتن خودتراکم- روش آزمون- استاندارد ملی INSO 11270
]29[ بتن- اندازه گیری قابلیت عبور بتن خودتراکم با استفاده از حلقه جی- روش آزمون- استاندارد ملی INSO 11270.
]30 [آزمون بتن تازه- بتن خودتراکم- آزمون قیف وی شکل- استاندارد ملی INSO 3203-9
]31 [بتن تازه- وزن مخصوص- روش آزمون- استاندارد ملی ISIRI 3203-6
]32 [بتن سخت شده- تعیین مقاومت فشاری آزمونه ها- روش آزمون- استاندارد ملی  INSO 1608-3
[33]   ASTM C1585-13. Standard test method for measurement of the rate of absorption of water by hydraulic cement. American Society for Testing and Materials. 2013.
[34]   BS-EN 1881-122. Testing concrete- Part 122: Method for determination of water absorption. 2011.
[35] NT BIULD 492. Chloride Migration Coefficient from non-steady state migration experiment. 1999
[36] AASHTO T358-17. Standard Method of Test for Surface Resistivity indicating Concrete’s Ability to Resist Chloride Ion Penetration. Standard by American Association of State and Highway Transport Officials, 2017.
  
 
]37 [سنگدانه های بتن- ویژگی ها- استاندارد ملی 302  تجدید نظر سوم-INSO 302