مروری بر اجزای شهرهای اسفنجی ساخته شده از بتن متخلخل در راستای توسعه پایدار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی عمران آب و محیط‌زیست، دانشگاه شهید بهشتی، تهران

2 دانشجوی دکتری، دانشکده مهندسی عمران آب و محیط‌زیست، دانشگاه شهید بهشتی، تهران

3 دانشجوی کارشناسی - گروه سازه و زلزله - دانشکده مهندسی عمران، آب و محیط زیست - دانشگاه شهید بهشتی

چکیده

افزایش جمعیت و توسعه فضای شهری از یک سو و از سوی دیگر گرمایش جهانی و تغییرات اقلیمی سبب ایجاد بحران‌های هیدرولوژیکی در نواحی شهری شده است. سیلاب‌های فصلی فراوان در سراسر دنیا و از طرفی معضل کمبود منابع آب شهری در برخی از فصول، سالانه خسارات زیادی را برای بسیاری از کشورها به همراه دارد. به دنبال وقوع سیلاب‌های متعدد و کمبود منابع، پژوهشگران چینی در سال 2014 مفهوم جدید شهرهای اسفنجی را به‌منظور حرکت در راستای توسعۀ پایدار، ارائه نمودند. پیشبرد برنامۀ ایجاد شهرهای اسفنجی به دلیل در بر گرفتن مقیاسی گسترده از مناطق و همچنین به‌ دلیل نیاز به هماهنگی‌ها و مجوزهای فراوان در سطح کشور، بر عهدۀ ارگان‌های دولتی خواهد بود. بتن متخلخل به‌عنوان فناوری نوین در توسعه فضاهای شهری به‌منظور کنترل رواناب‌های شهری در سال‌های اخیر در بسیاری از کشورهای پیشرفته تحت عنوان شهرهای اسفنجی مورد توجه بوده است. در گذشته این فناوری با چالش های فنی به مانند مقاومت مکانیکی محدود، دوام، گرفتگی درون حفره همراه بود که البته با توسعه فناوری مشکلات مرتفع گردید. این فناوری در کنار سایر اجزای تشکیل شهرهای اسفنجی مفهومی جدیدی از توسعه پایدار را معرفی می‎‌کند. در حال حاضر چالش‌های فراوانی در رسیدن به این مفهوم وجود دارد که اصلی‌ترین آن عدم وجود مدلی جامع و یکپارچه، با توجه به وجود ویژگی‌های اقلیمی و نیازهای متفاوت در مناطق مختلف یک کشور می‌باشد. این مطالعه به معرفی اجزای شهر اسفنجی پرداخته و با بررسی مطالعات گذشته، چالش‌های تحقق این مفهوم مورد بررسی قرار می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review of the Components of Sponge Cities based onPervious Concrete for Sustainable Development

نویسندگان [English]

  • kianoosh samimi 1
  • Mahyar Pakan 2
  • yahya sinaei 3
1 Assistant Professor, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran.
2 Ph.D. Student, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran
3 BSc Student, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran
چکیده [English]

Increased population and urbanization, on the one hand, and global warming and climate change, on the other hand, have resulted in urban hydrological problems. Seasonal floods, as well as a lack of urban water supplies in specific seasons, inflict significant harm to numerous countries every year. Following the happening of frequent floods and resource scarcity, Chinese researchers introduced a new concept of sponge cities in 2014 to progress toward sustainable development. The development of the sponge cities program will be the responsibility of government agencies due to the broad-scale coverage of the areas and the necessity for substantial coordination and licensing across the country. Pervious concrete is considered as a new technology in the development of urban spaces in order to control urban runoff in recent years in many developed countries as sponge cities. In the past, this technology was associated with technical challenges such as limited mechanical resistance, durability, clogging which were solved with the development of technology. This technology, along with other components of sponge cities introduces a new concept of sustainable development. In this study, the components of Sponge City are introduced and by reviewing previous studies, the challenges of realizing this concept are studied.

کلیدواژه‌ها [English]

  • Sustainable Development
  • Runoff
  • Drainage
  • Sponge City
  • Water Resources Management
[1]        J. G. Lee and J. P. Heaney, "Estimation of urban imperviousness and its impacts on storm water systems," Journal of Water Resources Planning and Management, vol. 129, no. 5, pp. 419-426, 2003.
[2]        M. V. Carle, P. N. Halpin, and C. A. Stow, "Patterns of watershed urbanization and impacts on water quality 1," JAWRA Journal of the American Water Resources Association, vol. 41, no. 3, pp. 693-708, 2005.
[3]        S. A. P. Division, World population prospects: the 2008 revision. United Nations Publications, 2010.
[4]        H. Jia, H. Yao, Y. Tang, L. Y. Shaw, R. Field, and A. N. Tafuri, "LID-BMPs planning for urban runoff control and the case study in China," Journal of Environmental Management, vol. 149, pp. 65-76, 2015.
[5]        D. R. Marlow, M. Moglia, S. Cook, and D. J. Beale, "Towards sustainable urban water management: A critical reassessment," Water research, vol. 47, no. 20, pp. 7150-7161, 2013.
[6]        "Speech writing / re-reading of the flood of 1398," ed, 2020.
[7]        F. K. S. Chan et al., "“Sponge City” in China—a breakthrough of planning and flood risk management in the urban context," Land Use Policy, vol. 76, pp. 772-778, 2018.
[8]        H. Li, L. Ding, M. Ren, C. Li, and H. Wang, "Sponge city construction in China: A survey of the challenges and opportunities," Water, vol. 9, no. 9, p. 594, 2017.
[9]        H. Wang, C. Mei, J. Liu, and W. Shao, "A new strategy for integrated urban water management in China: Sponge city," Science China Technological Sciences, vol. 61, no. 3, pp. 317-329, 2018.
[10]      C. Zevenbergen, D. Fu, and A. Pathirana, "Sponge cities: Emerging approaches, challenges and opportunities," 2018.
[11]      O. AlShareedah and S. Nassiri, "Pervious Concrete Mixture Optimization, Physical, and Mechanical Properties and Pavement Design: A Review," Journal of Cleaner Production, p. 125095, 2020.
[12]      J. Xia, Y. Zhang, L. Xiong, S. He, L. Wang, and Z. Yu, "Opportunities and challenges of the Sponge City construction related to urban water issues in China," Science China Earth Sciences, vol. 60, no. 4, pp. 652-658, 2017.
[13]      R. Cunha Marques, "Comparing private and public performance of Portuguese water services," Water policy, vol. 10, no. 1, pp. 25-42, 2008.
[14]      L. Tang, Q. Shen, M. Skitmore, and E. W. Cheng, "Ranked critical factors in PPP briefings," Journal of management in engineering, vol. 29, no. 2, pp. 164-171, 2013.
[15]      T. T. Nguyen et al., "Implementation of a specific urban water management-Sponge City," Science of the Total Environment, vol. 652, pp. 147-162, 2019.
[16]      T. T. Nguyen, H. H. Ngo, W. Guo, and X. C. Wang, "A new model framework for sponge city implementation: Emerging challenges and future developments," Journal of environmental management, vol. 253, p. 109689, 2020.
[17]      M. A. R. Bhutta, K. Tsuruta, and J. Mirza, "Evaluation of high-performance porous concrete properties," Construction and Building Materials, vol. 31, pp. 67-73, 2012.
[18]      S. Ishiguro and O. Morita, "Application of lightweight porous concrete to floating base structures for plantation," in Proceedings of the JCI symposium on design, construction and recent applications of porous concrete, Japan Concrete Institute, Tokyo, 2004, pp. 158-60.
[19]      R. Zhong, Z. Leng, and C.-s. Poon, "Research and application of pervious concrete as a sustainable pavement material: A state-of-the-art and state-of-the-practice review," Construction and Building Materials, vol. 183, pp. 544-553, 2018.
[20]      L. Senff, J. A. Labrincha, V. M. Ferreira, D. Hotza, and W. L. Repette, "Effect of nano-silica on rheology and fresh properties of cement pastes and mortars," Construction and Building Materials, vol. 23, no. 7, pp. 2487-2491, 2009.
[21]      N. Salemi and K. Behfarnia, "Effect of nano-particles on durability of fiber-reinforced concrete pavement," Construction and Building Materials, vol. 48, pp. 934-941, 2013.
[22]      F. Pacheco-Torgal, S. Miraldo, Y. Ding, and J. Labrincha, "Targeting HPC with the help of nanoparticles: an overview," Construction and Building Materials, vol. 38, pp. 365-370, 2013.
[23]      F. Sanchez and K. Sobolev, "Nanotechnology in concrete–a review," Construction and building materials, vol. 24, no. 11, pp. 2060-2071, 2010.
[24]      V. T. Tang and K. Pakshirajan, "Novel advanced porous concrete in constructed wetlands: preparation, characterization and application in urban storm runoff treatment," Water Science and Technology, vol. 78, no. 11, pp. 2374-2382, 2018.
[25]      J. A. Koupai, S. S. Nejad, S. Mostafazadeh-Fard, and K. Behfarnia, "Reduction of urban storm-runoff pollution using porous concrete containing iron slag adsorbent," Journal of Environmental Engineering, vol. 142, no. 2, p. 04015072, 2016.
[26]      H. Shang and Z. Sun, PAHs (naphthalene) removal from stormwater runoff by organoclay amended pervious concrete.
[27]      "Philadelphia Navy Yards," ed, 2015.
[28]      F. M. IX and E. H. George, "Review on sponge city construction for flood management," Sustainability, Agri, Food and Environmental Research, vol. 10, no. 1, 2022.
[29]      A. P. Davis, W. F. Hunt, R. G. Traver, and M. Clar, "Bioretention technology: Overview of current practice and future needs," Journal of environmental engineering, vol. 135, no. 3, pp. 109-117, 2009.
[30]      A. P. Davis, R. G. Traver, and W. F. Hunt, "Improving urban stormwater quality: applying fundamental principles," Journal of Contemporary Water Research & Education, vol. 146, no. 1, pp. 3-10, 2010.
[31]      K. DeBusk and T. Wynn, "Storm-water bioretention for runoff quality and quantity mitigation," Journal of Environmental Engineering, vol. 137, no. 9, pp. 800-808, 2011.
[32]      J. Liu, D. J. Sample, C. Bell, and Y. Guan, "Review and research needs of bioretention used for the treatment of urban stormwater," Water, vol. 6, no. 4, pp. 1069-1099, 2014.
[33]      D. Thorpe and Y. Zhuge, "Advantages and disadvantages in using permeable concrete as a pavement construction material," in Proceedings of the 26th Annual Conference of the Association of Researchers in Construction Management (ARCOM 2010), 2010, vol. 2: Association of Researchers in Construction Management (ARCOM), pp. 1341-1350.
[34]      M. E. Dietz, "Low impact development practices: A review of current research and recommendations for future directions," Water, air, and soil pollution, vol. 186, no. 1, pp. 351-363, 2007.
[35]      H. Liu, Y. Jia, and C. Niu, "“Sponge city” concept helps solve China’s urban water problems," Environmental Earth Sciences, vol. 76, no. 14, pp. 1-5, 2017.
[36]      Y. Peng and K. Reilly, "Using Nature to Reshape Cities and Live with Water: An Overview of the Chinese Sponge City Programme and Its Implementation in Wuhan," 2021.
[37]      Z. Zhang and L. Zhang, "Development of Sponge Cities and Construction Strategies of Different Climate Zones in China," in International Symposium on Advancement of Construction Management and Real Estate, 2019: Springer, pp. 255-269.