مقایسه‌ی رفتار قاب‌های خمشی بتن مسلح و سیستم دیوار برشی تحت بارگذاری انفجار

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی عمران، دانشگاه کردستان، سنندج، ایران

2 دانشجوی دکترای مهندسی عمران گرایش سازه، دانشگاه کردستان، سنندج، ایران

چکیده

چکیده
امروزه انفجار در مراکز شهرها و مناطق مسکونی خطری است که تمام ساختمان‌ها را تهدید می‌کند. انفجار در داخل و یا در نزدیکی ساختمان می‌تواند منجر به آسیب‌دیدگی ناگهانی قاب‌های ساختمانی شود. تحلیل و طراحی سازه‌ها تحت بارهای انفجاری نیازمند درک دقیق پاسخ دینامیکی اعضا و سیستم‌های سازه‌ای تحت این بارگذاری است. در این مقاله، پاسخ قاب‌های‌ خمشی بتن مسلح 1 تا 3 طبقه تحت بارگذاری جانبی انفجار مورد مطالعه قرار گرفته و با سیستم دیوار برشی مقایسه شده است. جابجایی، تنش، نحوه‌ی آسیب‌دیدگی و انرژی کرنشی در دو سیستم تحت بارگذاری انفجار با یکدیگر مقایسه شده است. مطابق با مهم‌ترین نتایج حاصل، آسیب‌پذیرترین نقاط قاب‌های خمشی تحت بار انفجار ستون‌ها و اتصالات طبقه همکف می‌باشد. در سیستم دیوار برشی، آسیب‌ها در تیرها، ستون‌ها، اتصالات و هم‌چنین دیوار برشی توزیع شده است. هم‌چنین، میزان جذب انرژی در سیستم دیوار برشی نسبت به قاب مشابه با سیستم قاب خمشی، بالاتر است. البته برای تصمیم‌گیری قطعی در این مورد و بررسی تخریب پیش‌رونده باید قاب‌های ساختمانی به صورت 3 بعدی (در هر 2 جهت) و با درنظر گرفتن دیوارهای پرکننده‌ در قاب مدل‌سازی گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison between Behavior of Reinforced Concrete Frames and Shear Walls under Blast Loading

نویسندگان [English]

  • Mohammad Esmaeilnia Omran 1
  • Somayeh Mollaei 2
1 Assistant Professor, Department of Civil Engineering, University of Kurdistan, Sanandaj, Iran
2 Ph.D. Candidate, Department of Civil Engineering, University of Kurdistan, Sanandaj, Iran
چکیده [English]

Abstract
Nowadays explosion in city centers and residential building areas is a dangerous threat to all buildings. Bomb explosion within or nearby a building can cause catastrophic damage to the buildings external and internal structural frames. The analysis and design of structures subjected to blast loads require a detailed understanding of blast phenomenon and the dynamic response of various structural elements subjected to blast loads. Comparison between response and behavior of reinforced concrete frame and shear wall systems under blast loading is rare in literature. In this paper, response of the RC frames subjected to lateral blast loads is investigated using explicit finite element (ABAQUS). This paper also examines the response of RC moment frames subjected to lateral blast loads and compares it with concrete shear wall system. A nonlinear finite element program is used to model 1 to 3 stories RC moment frames and concrete shear walls. In this study, displacement, stress, damage type and strain energy in the models under blast loading are compared. According to the main results, damage pattern of moment frames is concentrated in base columns and beam to column joints. In the shear wall models damage is distributed through beams, columns, joints and shear walls. Also, energy absorption in shear wall system is much more than moment frame.

کلیدواژه‌ها [English]

  • Blast load
  • Reinforced concrete frame
  • Shear wall
  • Finite element method
[1]     Andersson S, and Karlsson H. (2012). Structural Response of Reinforced Concrete Beams Subjected to Explosions. Master Thesis, Chalmers University of Technology, Goteborg, Sweden.

[2]     Arlery M, Rouquand A, and Chhim S. (2013). Numerical Dynamic Simulations for the Prediction of Damage and Loss of Capacity of RC Column Subjected to Contact Detonations. 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures (FraMCoS-8), Toledo, Spain, March 10-14.

[3]     ASCE. (2009). Blast Protection of Buildings (ASCE Standard). Reston, VA: American Society of Civil Engineers.

[4]     Astarlioglu S, and Krauthammer T. (2014). Response of Normal-Strength and Ultra-High-Performance Fiber-Reinforced Concrete Columns to Idealized Blast Loads. Eng Struct, 61: 1–12.

[5]     Astarlioglu S, Krauthammer T, Morency D, and Tran TP. (2013). Behavior of Reinforced Concrete Columns under Combined Effects of Axial and Blast-Induced Transverse Loads. Eng Struct, 55(1): 26–34.

[6]     Baker WE. (1973). Explosions in Air. University of Texas Press, Austin.

[7]     Bao XL, and Li B. (2010). Residual strength of blast damaged reinforced concrete columns. Int J Impact Eng, 37: 295–308.

[8]     Budziak BP, and Garbowski T. (2014). Failure Assessment of Steel-Concrete Composite Column Under Blast Loading. Engineering Transactions.

[9]     Carlsson M, and Kristensson R. (2012). Structural Response with Regard to Explosions - Mode Superposition, Damping and Curtailment. Masters Thesis, Lund University, Lund, Sweden.

[10]  Carriere M, Heffernan PJ, Wight RG, and Braimah A. (2009). Behaviour of Steel Reinforced Polymer (SRP) Strengthened RC Members under Blast Load. Can J Civ Eng, 36(8): 1356-1365.

[11]  Carta G, and Stochino F. (2013). Theoretical Models to Predict the Flexural Failure of Reinforced Concrete Beams under Blast Loads. Eng Struct, 49(1): 306–315.

[12]  Crawford JE. (2013). State of the Art for Enhancing the Blast Resistance of Reinforced Concrete Columns with Fiber-Reinforced Plastic. Can J Civ Eng, 40(1): 1023–1033.

[13]  Dassault Systèmes Simulia Corp. (2014). ABAQUS Analysis User’s Manual, Version 6.14-2.

[14]  Federal Institute of Technology. (2010). Model Code 2010, First Complete Draft, Volume 1: fib Bulletin 55. Switzerland.

[15]  FEMA 426. (2003). Risk Management Series: Reference Manual to Mitigate Potential Terrorist Attack Against Buildings. Federal Emergency Management Agency.

[16]  Fujikake K, and Aemlaor P. (2011). Damage of reinforced concrete columns under demolition blasting. Eng Struct, 55: 116–125.

[17]  Fung TC, and Chow SK. (1999). Responses of Blast Loading by Complex Time Step Method. Journal of Sound and Vibration, 223: 23-48.

[18]  Hao H, Shi Y, and Li ZX. (2007). Numerical simulation of blast wave interaction with structure columns. Shock Waves, 17:113–133.

[19]  Hinman E. (2003). Primer for Design of Commercial Buildings to Mitigate Terrorist Attacks. FEMA 427, Applied Technology Council (ATC), USA.

[20]  Hyde D. (1988). User's Guide for Microcomputer Programs CONWEP and FUNPRO, Applications of TM 5-855-1: Fundamentals of Protective Design for Conventional Weapons. USA Army Engineers Waterways Experimentation.

[21]  Li ZX, Shi Y, and Hao H. (2010). A new method for progressive collapse analysis of RC frames under blast loading. Eng Struct, 32: 1691–1703.

[22]  Luccioni BM, Ambrosini RD, and Danesi RF. (2004). Analysis of Building Collapse under Blast Loads. Eng Struct, 26(1): 63–71

[23]  Malvar LJ. (1998). Review of static and dynamic properties of steel reinforcing bars. ACI Materials Journal, 95 (5): 609-616.

[24]  Malvar LJ, and Crawford JE. (1998). Dynamic Increase Factors for Concrete. In:28th DDESB Seminar, Orlando, USA.

[25]  Mander JB, Priestley MJN, and Park R. (1988). Theoretical Stress-Strain Model for Confined Concrete. Struct Engine (ASCE), 114(8):1804-1826.

[26]  Mays GC, Hetherington JG, and Rose TA. (1999). Response to blast loading of concrete wall panels with openings. ASCE J Struct Eng, 125(12): 1448–1450.

[27]  Oswald CJ. (2010). Comparison of Response from Combined Axial and Blast Loads Calculated with SDOF and Finite Element Methods. In: DDESB Explosive Safety Seminar Portland, Oregon.

[28]  Remennikov AM, and Rose TA. (2007). Predicting the effectiveness of blast wall barriers using neural networks. Int J Impact Eng, 34: 1907–1923.

[29]  Shi YC, Hao H, Li ZX. (2008). Numerical derivation of pressure-impulse diagrams for prediction of RC column damage to blast loads. Int J Impact Eng, 35: 1213–1227.

[30]  Stochino F, and Carta G. (2014). SDOF Models for Reinforced Concrete Beams under Impulsive Loads Accounting for Strain Rate Effects. Nuc Eng Desig, 276: 74–86.

[31]  Tai YS, Chu TL, Hu HT, and Wu JY. (2011). Dynamic response of a reinforced concrete slab subjected to air blast load. Theor Appl Fract Mech, 56:140–147.

[32]  TM5-1300. (1990). Structures to resist the effects of accidental explosion, US Army.

[33]  US Department of the Army. (1986). Fundamentals of Protective Design for Conventional Weapons (TM 5-855-1). Washington.

[34]  US Department of Defense. (2008). Structures to Resist the Effects of Accidental Explosions. UFC 3-340-02. Washington (DC).

[35]  Wang XG, Nan G, Wang CM, and Su YP. (2011). Research on Simplified RC Frame Column Model under Blast Load. Adv Mater Res, 163-167: 4346-4349.

[36]  Wu C, Jones J, Oehlers DJ, Whittaker AS, Sun W, Marks S, et al. (2009). Finite difference analysis of simply supported RC slabs for blast loadings. Eng Struct, 31: 2825–2832.

[37]  Wu KC, Li B, and Tsai KC. (2011). Residual axial compression capacity of localized blast-damaged RC columns. International Journal of Impact Engineering, 38: 29-40.

[38]  Wu KC, Li B, and Tsai KC. (2011). The effects of explosive mass ratio on residual compressive capacity of contact blast damaged composite columns. J Constr Steel Res, 67:602–612.