ارزیابی نیروهای طراحی لرزه‌ای مخازن هوایی ذخیره مایعات بر اساس طیف طرح استاندارد 2800 و نشریة شمارة 38 در پهنه با خطر نسبی خیلی زیاد زلزله

نوع مقاله : مقاله پژوهشی

نویسنده

دانشیار سازه، دانشکده فنی و مهندسی، دانشگاه لرستان، خرم آباد، ایران

چکیده

بطور کلی مخازن هوایی ذخیره مایعات به علت شکل‌پذیری و ظرفیت جذب انرژی کم برای سطح نیروهای لرزه‌ای بالاتری نسبت به ساختمان‌ها طراحی می‌شوند. به طوریکه برای یک مخزن با شکل‌پذیری کم، ضریب برش پایه آن در حدود 6 تا 7 برابر بزرگتر از ضریب برش پایه یک ساختمان شکل‌پذیر است و برای یک مخزن با شکل‌پذیری بالا، این نسبت در حدود 3 تا 4 برابر در تمام استانداردها می‌باشد. در استاندارد 2800، ویرایش چهارم برای مخازن هوایی ذخیره مایعات ضریب رفتار 2 و 3 لحاظ شده است. در نشریه 38 ضریب رفتار برای مخازن هوایی مطابق با استاندارد 2800 ارائه شده است. نتایج نشان داد که در استاندارد 2800، نسبت ضریب برش پایه مخزن به ضریب برش پایه ساختمان شکل‌پذیر در پهنه با خطر نسبی خیلی زیاد به ترتیب برای مخازن با ضریب رفتار 3 و 2 در پریودهای کوتاه، به ترتیب برابر با 3.5 و 5،25 بوده در حالیکه این مقدار در نشریة 38 به ترتیب 4 و 6 حاصل شده است. همچنین نتایج نشان دادکه مقدار نسبت ضریب برش پایه مخازن به ساختمان در پریودهای کوتاه، برای هر دو ضریب رفتار و چهار نوع خاک در نشریة 38 به مقدار 14 درصد بیشتر از نتایج ویرایش چهارم استاندارد 2800 است. مقدار نسبت ضریب برش پایه مخازن به ساختمان در پریودهای بلند، برای هر دو ضریب رفتار و چهار نوع خاک در نشریة 38 به مقدار حداکثر 36 درصد کمتر از نتایج ویرایش چهارم استاندارد 2800 است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Seismic Design Forces of Liquid Storage Elevated Tanks based on Standard Design 2800 and Publication No. 38 in the Area with very High Relative risk of Earthquake

نویسنده [English]

  • Fereydoon Omidinasab
Associate Professor, Department of Engineering, Lorestan University, Khorramabad, Iran
چکیده [English]

Generally, elevated tanks of liquid storage are designed for higher seismic forces than buildings due to their ductility and low energy absorption capacity. So that for a tank with low ductitlity, its base shear coefficient is about 6 to 7 times larger than the base shear coefficient of a ductile building and for a tank with high ductility, this ratio is about 3 to 4 times higher than all standards. In standard 2800, the fourth edition for elevated tanks of liquid storage behavior coefficient 2 and 3 is considered. In standard 2800, the fourth edition for air tanks of liquid storage behavior coefficient 2 and 3 is considered. In the publication, No. 38 coefficients of behavior for elevated tanks are presented in accordance with the standard 2800. The results showed that in standard 2800, the ratio of the base shear coefficient of the tank to the base shear coefficient of the ductile building in the relatively high risk zone for tanks with behavior coefficients of 3 and 2 in short periods was 3.5 and 5,25, respectively, while this value was obtained in No. 38 publications 4 and 6, respectively. The results also showed that the ratio of base shear coefficient of tanks to buildings in short periods for both behavior coefficients and four soil types in publication No. 38 was 14% higher than the results of the fourth edition of standard 2800

کلیدواژه‌ها [English]

  • Elevated Tanks
  • Design Spectrum
  • Standard 2800
  • Ductility
  • Seismic Design Force
  • Publication No. 38
[1] Guerra OJ, Reklaitis GV. Advances and challenges in water management within energy systems. Renew Sustain Energy Rev 2018; 82:4009–19.
 [2] Liu R, Wei T, Zhao Y. Presentation and perspective of appealing green facilities for eco-cyclic water management. Chem Eng J 2018; 337:671–83.
[3] Skouteris G, et al. Water footprint and water pinch analysis techniques for sustainable water management in the brick-manufacturing industry. J Cleaner Prod 2018; 172:786–94.
[4] Ross A. Speeding the transition towards integrated groundwater and surface water management in Australia. J Hydrol 2018; 567:e1–10.
[5] Steinbrugge K, Flores R. The Chilean earthquakes of May, 1960: A structural engineering viewpoint. Bull Seismol Soc Am 1963; 53(2):225–307.
[6] Rai DC., Seismic retrofitting of R/C shaft support of elevated tanks. Earthquake spectra 2002; 18(4):745–60. [7] S. K. Jain, C. Murty, N. Chandak, L. Seeber, and N. Jain, “The September 29, 1993, M6.4 Killari, Maharashtra Earthquake in Central India,” EERI Special Earthquake Report, EERI Newsletter, vol. 28, no. 1, p. 8, 1994.
[8] Rai DC., Performance of elevated tanks inM w 7.7 Bhuj earthquake of January 26th, 2001, J Earth Syst Sci 2003; 112(3):421–9.
[9] M. Mehrain, Reconnaissance report on the Northern Iran earthquake of June 21, 1990, 1990.
[10] A. Astaneh-Asl, “Lessons of the 1990 Manjil-Iran earthquake,” in 10th European Conference on Earthquake Engineering, Vienna, 1994, vol. 28, pp. 6997-7000.
[11] Saffarini HS., Ground motion characteristics of the November 1995 Aqaba earthquake. Eng Struct 2000; 22(4):343–51.
[12] Sezen H, Livaoglu R, Dogangun A. Dynamic analysis and seismic performance evaluation of above-ground liquid-containing tanks. Eng Struct 2008; 30(3): 794–803.
[13] Cohen Y, Livshits A, Nascimbene R. Comparative approach to seismic vulnerability of an elevated steel tank within a reinforced concrete chimney. Periodica Polytechnica Civil Engineering 2017; 61(3):361–80.
[14] Brunesi E, Nascimbene R, Pagani M, Beilic D. Seismic performance of storage steel tanks during the May 2012 Emilia, Italy, earthquakes. J Perform Constr Facil 2015; 29(5):04014137.
[15] Fag`a E, Rassati G, Nascimbene R. Seismic design of elevated steel tanks with concentrically braced supporting frames. Structures Congress 2012; 2012:1473–84.
[16] Omidinasab F., Shakib H., 2009, Evaluation of Seismic Performance of Reinforced Concrete Elevated Water Tanks Using Dynamic Analysis, , 8th International Congress on Civil Engineering, (In Persian).
[17] Omidinasab F., Shakib H., 2008, Seismic vulnerability of elevated water tanks using performance based- design, The 14th World Conference on Earthquake Engineering, Beijing, China.
[18] Shakib H., Omidinasab F., Effect of Earthquake Characteristics on Seismic Performance of RC Elevated Water Tanks Considering Fluid Level within the Vessels, Arabian Journal for Science and Engineering volume 36, pages 227–243 (2011).
[19] Omidinasab F., Shakib H., Seismic Response Evaluation of the RC Elevated Water Tank with Fluid-Structure Interaction and Earthquake Ensemble, KSCE Journal of Civil Engineering (2012) 16(3):366-376.
[20] Shakib H., Omidinasab F., Ahmad M.T., Seismic Demand Evaluation of Elevated Reinforced Concrete Water Tanks, International Journal of Civil Engineerng. Vol. 8, No. 3, September 2010.
[21] Omidinasab F., Soroush Nia S., Shakib H., Evaluation of the Seismic Performance of Reinforced Concrete Elevated Water Tanks Using Dynamic Analysis, 14th European Conference on Earthquake Engineering 2010.
[22] Omidinasab F., Shakib H., Soroushnia S., Seismic Vulnerability Assessment of RC Elevated Water Tanks with Frame Staging Using Seismic Fragility Curves, 6th International Conference on Seismology and Earthquake Engineering, 2011.
[23] Fiore A., Demartino C., Greco R., Rago C., Sulpizio C., Vanzi I., Seismic performance of spherical liquid storage tanks: a case study, International Journal of Advanced Structural Engineering (2018) 10:121–130.
[24] Tripathi S. S., Thapa K. B., Seismic Performance of Elevated Reinforced Concrete Water Tanks, Journal of the Institute of Engineering, Volume 16, No. 1, 51-60.
[25] Sakshi M, Earthquake Response Control of RC Water Tower Frame Staging Using Special Protection System Sakshi Manchalwar, Civil Engineering Research Journal, Vol. 4 No. 1, 2018, 1-5.
[26] Bakalis K., Vanmvatsikos D., Grant D. N., Mistry A., Downtime assessment of base-isolated liquid storage tanks, Conference of earthquake risk and engineering towards a resilient word, Greenwich, London 2019.
[27] Malkeshi O., Adibi M., Seismic behavior of steel elevated water tanks damaged in ezgeleh Kermanshah, Iran earthquake (2017) with consideration of soil-structure interaction, 8th International Conference on Seismology & Earthquake Engineering, Tehran, Iran, 2019.
[28] Mansour A. M., Kassem M. M., Nazri F. M., Seismic vulnerability assessment of elevated water tanks with variable staging pattern incorporating the fluid-structure interaction, Structures 34 (2021) 61–77.
[29] Khosravi SH., Yousefi M. M., Goudarzi M. A., Development of Seismic Fragility Curves of Cylindrical Concrete Tanks Using Nonlinear Analysis, Amirkabir J. Civil Eng., 53(1) (2021) 19-22.
[30] Xiong Zh., Chen Liu Ch., Zhang A,, Zhu H., Jiawen Li J., Seismic fragility evaluation of simply supported aqueduct accounting for water stop’s leakage risk, Water 2021, 13, 1404.
[31] Lakhade S. O., Kumara R., Jaiswal O. R., Damage states of yielding and collapse for elevated water tanks supported on RC frame staging,  Structural Engineering and Mechanics, Vol. 67, No. 6 (2018) 587-601.
[32] Mansour A. M., Nazri F. M., On the Influence of Fluid–Structure Interaction and Seismic Design on Frame-Supported Elevated Water Tanks, Structural Engineering International, 2021, DOI: 10.1080/10168664.2021.1948379.
[33] Mansour A. M., Kassem M. M., Nazri F. M., Estimation of drift limits for diff erent seismic damage states of RC frame staging in elevated water tanks using Park and Ang damage index, Earthq Eng & Eng Vib (2020) 19: 161-177.
[33] Razmyar Ghateh, Nonlinear seismic response of reinforced concrete pedestal in elevated warter tanks, Thesis, Toronto, Ontario, Canada, 2014.
[34] Soroushnia S, Tafreshi ST, Omidinasab F, et al., Seismic performance of RC elevated water tanks with frame staging and exhibition damage pattern. Procedia Engineering, 2011; 14: 3076–3087.
[35] S. Soroush Nia, F. Omidinasab, N. Beheshtian, Seismic Performance of Reinforced Concrete Water Tanks with Shaft Staging During the Past Earthquakes, Proceedings of the 3rd International Conference on Seismic Retrofitting, Tabriz, Iran, October 2010.
[36] Kilanei F., Mohebbi B., Mardi Pirsultan M. R., Review and comparison of seismic design criteria of storage tanks based on different regulations, Proceedings of the Second National Conference on Earthquake, 2015, Iran, Qazvin, Imam Khomeini International University.
[37] Khanmohammadi M., Akhavan Hejazi F. S., Hataminia H., A Study of the Basics of Designing Concrete Water Storage Tanks in Regulations ACI350.3-06, NZS 3106-2009, EN 1998-4: 2006 (E) and Journal 123, 8th National Congress of Civil Engineering, Faculty of Civil Engineering, Babol, 2014.
[38] Jaiswal O. R., Rai D. C., Jain S. K., Review of code provisions on design seismic forces for liquid storage tanks, Document No., IITK-GSDMA-EQ01-V1.0, Final Report A - Earthquake Codes, IITK-GSDMA Project on Building Codes, 2008.
[39] Road, Housing and Urban Development Research Center, Earthquake Design Regulations, Standard 2800, Fourth Edition, 2015, (In Persian).
[40] Ministry of Oil, Seismic Design Regulations for Oil Industry Facilities and Structures, Journal No. 38, Third Edition, Deputy of Engineering, Research and Technology, 2016, (In Persian).