بررسی اثر جایگزینی پسماند معادن خاک نسوز با سیمان در مشخصات مکانیکی و روانی بتن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشگاه فنی و حرفه ای ، تهران، ایران

2 هیات علمی گروه عمران- دانشگاه آزاد اسلامی واحد اقلید

3 مدیر امور فنی و مهندسی بنیاد بتن ایران

چکیده

چکیده :

با توجه به اینکه سیمان بعنوان اصلی ترین مصالح تشکیل دهنده بتن در سال های اخیر بعلت هزینه های مستقیم و غیر مستقیم زیاد مورد توجه دانشمندان ومحققین حوزه صنعت ساختمان بوده است. خاک سیاه نسوز که بعنوان مواد زائد از معادن کارخانجات کاشی سازی استخراج می شود بعنوان معضل شناخته شده و در صورت استفاده در صنایع دیگر می تواند برای حفظ محیط زیست موثر باشد. در این پژوهش 216 نمونه در قالب 24 نسبت مخلوط و در سنین 7 و 28 و 90 روزه ساخته و پس از انجام آزمایشات مقاومت فشاری و اسلامپ و همچنین عکسبرداری الکترونی می توان دریافت که استفاده از میزان بهینه پسماند خاک سیاه نسوز می تواند تغییری در مقاومت فشاری بتن در سنین بالا ننماید که خود این می تواند نشانگر مثبت بودن امکان استفاده از این پسماند به جای سیمان در بتن بمنظور کاهش هزینه محصول نهایی و حفظ محیط زیست در راستای توسعه پایدار باشد. در این پژوهش مشاهده گردید در درصد جایگزینی 5 و 10 درصد خاک سیاه با سیمان در مقاومت 28 روزه و درصد جایگزینی 15 درصد در مقاومت 90 روزه می توان بعنوان درصد بهینه جایگزینی معرفی نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effects of Substituting Non-fired Black Soil Waste for Cement on the Mechanical and Flubility Properties of Concrete

نویسندگان [English]

  • amirhossein moharrer 1
  • davood ghaedian 2
  • hossein eftekhar 3
1 Department of Civil Engineering, Technical and Vocational University (TVU), Tehran, Iran
2 Department of Civil Engineering, Azad and Islamic University of Eqlid
3 Technical Manager and Engineering of Bonyad Beton Company
چکیده [English]

A b s t r a c t

Considering cement as the main constituent material of concrete, in recent years, it has received significant attention from researchers and scientists in the construction industry due to high direct and indirect costs. Non-burnt black soil, which is extracted as waste material from ceramic tile factories, is a recognized problem, and its utilization in other industries can have a positive impact on environmental preservation. In this study, 216 samples were prepared in the form of 24 mix ratios and at ages of 7, 28, and 90 days. After conducting compressive strength and slump tests, as well as electron microscopy imaging, it can be observed that the optimal utilization of non-burnt black soil waste can bring about changes in the compressive strength of concrete at higher ages, indicating the potential use of this waste as a substitute for cement in concrete to reduce the cost of the final product and promote environmental preservation towards sustainable development. In this study, it was observed that a replacement percentage of 5% and 10% of black soil with cement at 28 days and a replacement percentage of 15% at 90 days can be introduced as the optimal substitution percentage.

کلیدواژه‌ها [English]

  • Green Concrete
  • Non-Burnt Black Soil Waste Powder
  • Concrete Compressive Strength
  • Cement Substitution
  • Material Recycling
  • Environment
[1] Abdulrahman, H., Muhamad, R., Visintin, P., & Shukri, A. A. (2022). Mechanical properties and bond stress-slip behaviour of fly ash geopolymer concrete. Construction and Building Materials, 327, 126909. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2022.126909
[2] Ahmad, J., Majdi, A., Babeker Elhag, A., Deifalla, A. F., Soomro, M., Isleem, H. F., & Qaidi, S. (2022). A step towards sustainable concrete with substitution of plastic waste in concrete: Overview on mechanical, durability and microstructure analysis. Crystals, 12(7), 944. https://doi.org/https://doi.org/10.3390/cryst12070944
[3] Bechikh, A., Klinkova, O., Maalej, Y., Tawfiq, I., & Nasri, R. (2020). Sandblasting parameter variation effect on galvanized steel surface chemical composition, roughness and free energy. International Journal of Adhesion and Adhesives, 102, 102653. https://doi.org/https://doi.org/10.1016/j.ijadhadh.2020.102653
[4] Branca, T. A., Colla, V., Algermissen, D., Granbom, H., Martini, U., Morillon, A., Pietruck, R., & Rosendahl, S. (2020). Reuse and recycling of by-products in the steel sector: Recent achievements paving the way to circular economy and industrial symbiosis in Europe. Metals, 10(3), 345. https://doi.org/https://doi.org/10.3390/met10030345
[5] Choudhary, R., Gupta, R., Nagar, R., & Jain, A. (2020). Sorptivity characteristics of high strength self-consolidating concrete produced by marble waste powder, fly ash, and micro silica. Materials Today: Proceedings, 32, 531-535. https://doi.org/https://doi.org/10.1016/j.matpr.2020.01.287
[7] De Maeijer, P. K., Craeye, B., Snellings, R., Kazemi-Kamyab, H., Loots, M., Janssens, K., & Nuyts, G. (2020). Effect of ultra-fine fly ash on concrete performance and durability. Construction and Building Materials, 263, 120493. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.120493
[8] Demiss, B. A., Oyawa, W. O., & Shitote, S. M. (2018). Mechanical and microstructural properties of recycled reactive powder concrete containing waste glass powder and fly ash at standard curing. Cogent Engineering, 5(1), 1464877. https://doi.org/https://doi.org/10.1080/23311916.2018.1464877
[9] Gholampour, A., Zheng, J., & Ozbakkaloglu, T. (2021). Development of waste-based concretes containing foundry sand, recycled fine aggregate, ground granulated blast furnace slag and fly ash. Construction and Building Materials, 267, 121004. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.121004
[10] Hosseini, S. A. (2020). Application of various types of recycled waste materials in concrete constructions. Advances in concrete construction, 9(5), 479. https://doi.org/https://doi.org/10.12989/acc.2020.9.5.479
[11] Jafari, K., & Rajabipour, F. (2021). Performance of impure calcined clay as a pozzolan in concrete. Transportation Research Record, 2675(2), 98-107. https://doi.org/https://doi.org/10.1177/0361198120953140
[12] Karim, M., Zain, M., Jamil, M., & Lai, F. (2011). Significance of waste materials in sustainable concrete and sustainable development. International Journal of Biotechnology and Environmental Management, 18, 43-47. https://www.researchgate.net/profile/Md-Karim-8/publication/268004469_Significance_of_Waste_Materials_in_Sustainable_Concrete_and_Sustainable_Development/links/557284cb08ae7536374e00ec/Significance-of-Waste-Materials-in-Sustainable-Concrete-and-Sustainable-Development.pdf
[13] Karim, M., Zain, M., Jamil, M., Lai, F., & Islam, M. (2012). Strength of mortar and concrete as influenced by rice husk ash: A review. World Applied Sciences Journal, 19(10), 1501-1513. https://doi.org/10.5829/idosi.wasj.2012.19.10.533
[14] Kaur, G., Siddique, R., & Rajor, A. (2012). Properties of concrete containing fungal treated waste foundry sand. Construction and Building Materials, 29, 82-87. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2011.08.091
[15] Li, P. P., Brouwers, H., Chen, W., & Yu, Q. (2020). Optimization and characterization of high-volume limestone powder in sustainable ultra-high performance concrete. Construction and Building Materials, 242, 118112. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.118112
[16] Liew, K., & Akbar, A. (2020). The recent progress of recycled steel fiber reinforced concrete. Construction and Building Materials, 232, 117232. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2019.117232
[17] Mohammadzadeh, C. N., & Rahmani, H. (2021). The effect of limestone powder on mechanical properties of Reactive Powder Concrete (RPC). https://www.sid.ir/paper/1036766/fa
[18] Moharrer, A., Gholhaki, M., Rezaifar, O., & Kheyroddin, A. (2023). Study on Mechanical and Microstructural Properties of the Magnetized Cement Mortar Incorporating Quartz Grains and Natural Zeolite. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 47(3), 1399-1410. https://doi.org/https://doi.org/10.1007/s40996-022-01008-3
[19] Moharrer, A., Rezaeefar, o., Kheiroldin, a., & Gholhaki, m. (2021). Examining the Impact of Magnetic Field on Compressive
Strength of Cement Paste with Quartz Aggregate and
Zeolite. Karafan, 18(1), 151-166. https://doi.org/10.48301/KSSA.2021.283937.1504 (in persian)
[20] Pachideh, G., & Gholhaki, M. (2020). Assessment of post-heat behavior of cement mortar incorporating silica fume and granulated blast-furnace slag. Journal of Structural Fire Engineering, 11(2), 221-246. https://doi.org/https://doi.org/10.1108/JSFE-11-2018-0038
[21] Pachideh, G., Gholhaki, M., & Moshtagh, A. (2020). Experimental study on mechanical strength of porous concrete pavement containing pozzolans. Advances in Civil Engineering Materials, 9(1), 38-52. https://doi.org/https://onlinelibrary.wiley.com/doi/abs/10.1002/suco.202100567
[22] Parashar, A., Aggarwal, P., Saini, B., Aggarwal, Y., & Bishnoi, S. (2020). Study on performance enhancement of self-compacting concrete incorporating waste foundry sand. Construction and Building Materials, 251, 118875. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.118875
[23] Qomariah, Q., Sugiharti, S., & Riyanto, S. (2020). The utilization of sandblasting sand waste for mortar and normal concrete. IOP Conference Series: Materials Science and Engineering,
[24] Sebastin, S., Priya, A. K., Karthick, A., Sathyamurthy, R., & Ghosh, A. (2020). Agro waste sugarcane bagasse as a cementitious material for reactive powder concrete. Clean Technologies, 2(4), 476-491. https://doi.org/https://doi.org/10.3390/cleantechnol2040030
[25] Sukmana, N. C., Melati, M. S., Setyawan, M. I., Prayoggi, E., & Anggarini, U. (2019). Optimization of cellular lightweight concrete using silica sand of sandblasting waste based on factorial experimental design. IOP Conference Series: Materials Science and Engineering,
[26] Tam, C. M., Tam, V. W., & Ng, K. M. (2012). Assessing drying shrinkage and water permeability of reactive powder concrete produced in Hong Kong. Construction and Building Materials, 26(1), 79-89. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2011.05.006
[27] Teixeira, E. R., Camões, A., & Branco, F. (2019). Valorisation of wood fly ash on concrete. Resources, Conservation and Recycling, 145, 292-310. https://doi.org/https://doi.org/10.1016/j.resconrec.2019.02.028
[28] Toghroli, A., Shariati, M., Sajedi, F., Ibrahim, Z., Koting, S., Mohamad, E. T., & Khorami, M. (2018). A review on pavement porous concrete using recycled waste materials. Smart Struct. Syst, 22(4), 433-440. https://doi.org/https://doi.org/10.12989/sss.2018.22.4.433
[29] Topič, J., & Prošek, Z. (2017). Hydration process and mechanical properties of cement paste with recycled concrete powder and silica sand powder. http://hdl.handle.net/10467/105986
[30] Toufigh, V., & Pachideh, G. (2022). Cementitious mortars containing pozzolana under elevated temperatures. Structural Concrete, 23(5), 3294-3312. https://doi.org/https://doi.org/10.1002/suco.202100567
[31] Zhuang, W., Li, S., Wang, Z., Zhang, Z., & Yu, Q. (2022). Impact of micromechanics on dynamic compressive behavior of ultra-high performance concrete containing limestone powder. Composites Part B: Engineering, 243, 110160. https://doi.org/https://doi.org/10.1016/j.compositesb.2022.110160
[32] محرر, ا. (2023). بررسی اثر جایگزینی پسماند ماسه حاصل از کارخانه سند بلاست با سیمان در مشخصات رئولوژی و مکانیکی بتن. فصلنامه علمی کارافن, -. https://doi.org/10.48301/kssa.2023.409074.2640