بررسی تاثیر افزودن پسماندهای پلیمر PET بر مقاومت فشاری و وزن بتن به منظور ساخت مصالح پایدار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، معماری، دانشکده هنر و معماری، دانشگاه مازندران، بابلسر، ایران

2 استادیار، مهندسی معماری، دانشکده هنر و معماری، دانشگاه مازندران، بابلسر، ایران

چکیده

مصالح با پایه سیمان که امروزه در ساختمان‌سازی مورد استفاده قرار می‌گیرند، در مقیاس بسیار وسیعی به استخراج ماسه و شن طبیعی نیاز دارند که این امر همچنان رو به افزایش است. از طرفی بشر با تولید روزافزون پلاستیک‌ها و علی‌الخصوص پلیمر PET که از نمونه‌های استفاده آن بطری‌های آب معدنی می‌باشد و رها سازی این بطری‌ها پس از مصرف در طبیعت، چالشی جدید در زمینه نابودی محیط زیست به وجود آورده است. در این پژوهش با هدف بازیافت PET و کاهش مصرف سنگدانه طبیعی در ساخت ملات‌های سیمانی و بتن، ذرات ریز شده PET (WPLA) با درصدهای مختلف جایگزین شن و ماسه شدند و عواملی همچون وزن و مقاومت فشاری کامپوزیت‌های ساخته شده مورد ارزیابی قرار گرفتند. نتایج نشان داد که این مصالح نسبت به نمونه‌های فاقد WPLA از وزن کم‌تری برخوردارند اما مقاومت فشاری آن‌ها کاهش یافته است و با توجه به استانداردهای مطرح در این زمینه در رده مصالح غیر باربر قرار می‌گیرند و در بخش‌های غیرسازه‌ای می‌توانند مورد استفاده قرار گیرند

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the Effect of adding PET Polymer Waste on the Compressive Strength and Weight of Concrete in order to Make Sustainable Materials

نویسندگان [English]

  • Saeed Saeed Kazemi Fard 1
  • mostafa Gholipour gashniani 2
1 Msc Student, Architecture, Art and Architecture, University of Mazandaran, Babolsar, Iran
2 Assistant professor, Department of Architecture, Arts and Architecture, University of Mazandaran, Babolsar, Iran
چکیده [English]

Cement-based materials that are used in construction today, require the extraction of natural sand and gravel on a very large scale, which is still increasing. On the other hand, with the ever-increasing production of plastics, especially PET polymer, which is one of the examples of its uses is in mineral water bottles, and the release of these bottles after consumption in nature, a new challenge in the field of environmental destruction has been created. In this research, with the aim of recycling PET and reducing the consumption of natural aggregates in the production of cement and concrete mortars, fine particles of PET (WPLA) were replaced with sand in different percentages, and factors such as weight and compressive strength of the manufactured composites were evaluated. The results showed that these materials have less weight than the samples without WPLA, but their compressive strength has decreased and according to the standards in this field, they are placed in the category of non-load bearing materials and in the section of non-structural parts can be used.

کلیدواژه‌ها [English]

  • Sustainable materials
  • Concrete Materials
  • PET Recycling

[1] Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science347(6223), 768-771.

[2] Preston, F., & Lehne, J. (2018). Making Concrete Change Innovation in Low-carbon Cement and Concrete.

[3] Anandan, S., & Alsubih, M. (2021). Mechanical strength characterization of plastic fiber reinforced cement concrete composites. Applied Sciences11(2), 852.

[4] Li, X., Ling, T. C., & Mo, K. H. (2020). Functions and impacts of plastic/rubber wastes as eco-friendly aggregate in concrete–A review. Construction and Building Materials240, 117869.

[5] Silva, D. A. D., Betioli, A. M., Gleize, P. J. P., Roman, H. R., Gomez, L. A., & Ribeiro, J. L. D. (2005). Degradation of recycled PET fibers in Portland cement-based materials. Cement and concrete research35(9), 1741-1746.

[6] De Lima, N. L. P., dos Santos Felipe, R. C. T., & Felipe, R. N. B. (2020). Cement mortars with use of polyethylene tereftalate aggregate: a review on its sustainability. Research, Society and Development9(8), e513985640-e513985640.

[7] Al-Tulaian, B. S., Al-Shannag, M. J., & Al-Hozaimy, A. R. (2016). Recycled plastic waste fibers for reinforcing Portland cement mortar. Construction and Building Materials127, 102-110. https://doi.org/10.1016/j.conbuildmat.2016.09.131.

[8] Del Rey Castillo, E., Almesfer, N., Saggi, O., & Ingham, J. M. (2020). Light-weight concrete with artificial aggregate manufactured from plastic waste. Construction and Building Materials265, 120199.

[9] Al-Manaseer, A. A., & Dalal, T. R. (1997). Concrete containing plastic aggregates. Concrete international19(8), 47-52.

[10] Shalaby, A., Ward, A., Refaee, A., Abd-El-Messieh, S., Abd-El-Nour, K., El-Nashar, D., & Zayed, H. (2013). Compressive strength and electrical properties of cement paste utilizing waste polyethylene terephthalate bottles. J Appl Sci Res9, 4160-73.

[11] Akçaözoğlu, S., Akçaözoğlu, K., & Atiş, C. D. (2013). Thermal conductivity, compressive strength and ultrasonic wave velocity of cementitious composite containing waste PET lightweight aggregate (WPLA). Composites Part B: Engineering45(1), 721-726. https://doi.org/10.1016/j.compositesb.2012.09.012.

[12] Safi, B., Saidi, M., Aboutaleb, D., & Maallem, M. (2013). The use of plastic waste as fine aggregate in the self-compacting mortars: Effect on physical and mechanical properties. Construction and Building Materials, 43, 436-442.

[13] Comby-Peyrot, I., Bernard, F., Bouchard, P. O., Bay, F., & Garcia-Diaz, E. (2009). Development and validation of a 3D computational tool to describe concrete behaviour at mesoscale. Application to the alkali-silica reaction. Computational Materials Science, 46(4), 1163-1177.

[14] Hanuseac, L., Barbuta, M., Bejan, L., Rosu, R., & Timu, A. (2021, February). Experimental study on hollow blocks with wastes. In Proceedings (Vol. 63, No. 1, p. 79). MDPI.

[15] Sowmiya, T. (2023). Experimental study on enhancement of compressive strength of concrete by polyethylene terephthalate flakes with fine aggregate and addition of silica flume to the volume of concrete. Journal of Survey in Fisheries Sciences10(2S), 504-512.

[16] Daisy Angel Priya, I., Akshaya, S., Harsha Neya, S., Vanitha, S., Karthigai Priya, P., & Johnson, J. N. (2023). Experimental investigation on replacement of PET aggregate as fine aggregate and water hyacinth as bio plasticizer in concrete. International Review of Applied Sciences and Engineering.

[17] Kangavar, M. E., Lokuge, W., Manalo, A., Karunasena, W., & Frigione, M. (2022). Investigation on the properties of concrete with recycled polyethylene terephthalate (PET) granules as fine aggregate replacement. Case Studies in Construction Materials16, e00934.

[18] Hannawi, K., Kamali-Bernard, S., & Prince, W. (2010). Physical and mechanical properties of mortars containing PET and PC waste aggregates. Waste management30(11), 2312-2320.

[19] Rahmani, E., Dehestani, M., Beygi, M. H. A., Allahyari, H., & Nikbin, I. M. (2013). On the mechanical properties of concrete containing waste PET particles. Construction and Building Materials, 47, 1302-1308. https://doi.org/10.1016/j.conbuildmat.2013.06.041.

[20] Gouasmi, M. T., Benosman, A., Taibi, H., Belbachir, M., & Senhadji, Y. (2016). Les Propriétés physico-thermiques des mortiers à base des agrégats composites. Journal of Materials and Environmental Science, 7(2), 409-415.

[21] Da Silva, A. M., de Brito, J., & Veiga, R. (2014). Incorporation of fine plastic aggregates in rendering mortars. Construction and Building Materials71, 226-236.

[22] Rahman, M. M., Mahi, M. A., & Chowdhury, T. U. (2013). Utilization of waste PET bottles as aggregate in masonry mortar. International Journal of Engineering Research & Technology (IJERT)2(11), 1030-1035.

[23] Albano, C., Camacho, N., Hernández, M., Matheus, A., & Gutierrez, A. (2009). Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios. Waste management29(10), 2707-2716.

[24] Marzouk, O. Y., Dheilly, R. M., & Queneudec, M. (2007). Valorization of post-consumer waste plastic in cementitious concrete composites. Waste management27(2), 310-318. https://doi.org/10.1016/j.wasman.2006.03.012.

[25] Waroonkun, T., Puangpinyo, T., & Tongtuam, Y. (2017). The Development of a Concrete Block Containing PET Plastic Bottle Flakes. Journal of Sustainable Development10(6), 186.

[26] Frigione, M. (2010). Recycling of PET bottles as fine aggregate in concrete. Waste management30(6), 1101-1106. https://doi.org/10.1016/j.wasman.2010.01.030.

[27] فیک سی سی(fikcc). ( 1400). سایت رسمی سیمان فیروزکوه. تاریخ دسترسی( 13/11/1400 ساعت 10:15 صبح)

https://www.fikcc.com/%d8%b3%db%8c%d9%85%d8%a7%d9%86-%d9%be%d8%b1%d8%aa%d9%84%d9%86%d8%af-%d8%aa%db%8c%d9%be-2/

[28] ASTM C70. (2006). Standard test method for surface moisture in fine aggregate.

[29] استاندارد ملی ایران 4977. (1393).سنگدانه­ها-دانه­بندی سنگدانه­های ریز و درشت- روش آزمون. تجدید نظر اول.

[30] استاندارد ملی ایران 11267. (1394).سنگدانه­ها-نمونه برداری از سنگدانه­ها-آیین کار. تجدید نظر اول.

[31] استاندارد ملی ایران 1-1608. (1393). بتن سخت شده-قسمت1:شکل، ابعاد و سایر الزامات آزمونه­ها و قالب­ها. تجدید نظر دوم.

[32] استاندارد ملی ایران 2-1608. (1393). بتن سخت شده-قسمت2:ساخت و عمل­آوری آزمونه ­ها برای آزمون­های مقاومت. چاپ اول.

[33] استاندارد ملی ایران 3-1608. (1393). بتن سخت شده-قسمت3:تعیین مقومت فشاری آزمونه ­ها-روش آزمون. چاپ اول.

 [34] ASTM C129. (2011). Standard Specification for Nonloadbearing Concrete Masonry Units. Bankoff, G., Frerks, G., & Hilhorst, D. (Eds.). (2013). Mapping Vulnerability:"      Disasters, Development and People". Routledge.