تاثیر سرباره آهن و الیاف پلی‌پروپیلن بر مشخصات مقاومتی و ضربه ملات ژئوپلیمری پایه خاک رس زئولیتی فعال شده با مواد قلیایی سدیمی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی عمران، دانشگاه سمنان

2 استاد، دانشکده مهندسی عمران، دانشگاه سمنان

3 ستاد، دانشکده مهندسی عمران، دانشگاه سمنان

چکیده

امروزه با درک اثرات مخرب سیمان و ایجاد آلاینده‌گی محیط زیست، دانشمندان در صدد دریافت روش‌های مختلف به منظور جایگزینی سیمان، توام سازگار با محیط زیست می‌باشند. یکی از این روش‌ها، استفاده از مواد پایه خاک حاوی الومینوم سیلیکاتی با فعال کننده‌های قلیایی و ضایعات صنعتی می‌باشد. هدف اصلی این تحقیق بررسی مشخصات مقاومتی و دوام ملات ژئوپلیمر و مقایسه آن با ملات پایه سیمانی و گلی خاک رس بود. برای این هدف هشت طرح اختلاط ملات مدنظر گرفته شد. دو طرح آن به ملات‌های پایه سیمانی و گلی به منظور مقایسه و شش طرح آن به ملات ژئوپلیمری اختصاص داده شد. ملات ژئوپلیمری با 0، 30 و 40 درصد سرباره که در سه طرح آن 1/0 درصد الیاف پلی‌پروپلین به‌صورت حجمی استفاده گردیده مدنظر گرفته شد. غلظت محلول هیدروکسید‌سدیم 12 مولار و نسبت سیلیکات سدیم بر هیدروکسید‌سدیم 5/2 بودند. نمونه ها از نظر مقاومت فشاری و کششی در سنین 7، 28، 54 و 90 روز آزمایش شدند و پس از 28 روز نیز آزمون جذب آب، جذب آب موئینگی و مقاومت در برابر ضربه انجام شد. نتایج آزمون مقاومت فشاری 28 روزه نشان داد که نمونه‌های ژئوپلیمری حاوی 30 و 40 % سرباره با الیاف پلی‌پروپیلن به ترتیب 53 و 73% مقاومت نمونه سیمانی و 6/3 و 9 برابر نسبت به نمونه‌ پایه رسی بیشتر شدند و مقاومت کششی نمونه‌های موردنظر 53 و 63 % مقاومت نمونه سیمانی را کسب کردند و نسبت به نمونه پایه رسی 5 و 5/9 برابر بیشتر شدند. نتایج نشان داد که استفاده از الیاف پلی‌پروپیلن در نمونه‌های ژئوپلیمری حاوی 30 و 40% سرباره باعث کاهش جذب آب گردید ولی در مقایسه با نمونه سیمانی، پس از ۷۲ ساعت ۹۵ و ۷۲ % آب بیشتری جذب کردند. ضریب جذب موئینگی در تمامی نمونه‌های ژئوپلیمری رقم بالایی را نشان داد اما استفاده از الیاف در نمونه حاوی 40 % سرباره باعث کاهش 1 % این ضریب نسبت به نمونه غیرالیافی آن گردید. نتایج مقاومت ترک خوردگی نمونه‌های ژئوپلیمری در آزمایش ضربه نشان داد که نمونه‌های حاوی 30 و 40 % سرباره با الیاف به ترتیب 40 و 73 % مقاومت ترک خوردگی نمونه سیماتی را کسب کردند. مقاومت انهدام نمونه حاوی 30 % سرباره با الیاف حدود 46 % مقاومت سیمانی را به‌دست آورد اما مقاومت انهدام نمونه حاوی 40 % سرباره با الیاف، 15 % بیشتر از نمونه سیمانی شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Iron Slag and Polypropylene Fibers on the Strength and Impact Characteristics of Geopolymer Mortar based on Zeolite Clay Activated with Sodium Alkali Substances

نویسندگان [English]

  • Mohammad Arif koshyar 1
  • omid rezaifar 2
  • Mohammad Kazem Sharbatdar 3
1 PhD Candidate, Faculty of Civil Engineering, Semnan University, Semnan, Iran
2 Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
3 Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran.
چکیده [English]

In light of the adverse ecological outcomes of cement production, researchers are exploring alternative materials that can replace cement in construction while maintaining environmental compatibility. An alternative strategy is the use of soil base materials containing aluminum silicate with alkaline activators and industrial waste. This study aims to evaluate the strength and durability properties of geopolymer mortar relative to cement and clay-based mortars. Eight mixing designs were employed, including two for cement and clay-based mortars for comparison, and six for geopolymer mortars. The geopolymer mortars tested comprised 0%, 30%, and 40% slag, with 0.1% polypropylene fibers used in three designs. A 12 M concentration of sodium hydroxide solution and a sodium silicate to sodium hydroxide ratio of 2.5 were utilized in this study. The samples were subjected to compressive and tensile strength evaluations at 7, 28, 54, and 90-day intervals. Additionally, water absorption, capillary water absorption, and impact resistance tests were performed after 28 days. The compressive strength test conducted after 28 days revealed that geopolymer mortars that contained either 30% or 40% slag, along with polypropylene fibers, achieved 53% and 73% of the compressive strength of the cement sample, respectively. This increase represented a 3.6 to 9-fold improvement over clay-based samples. The tensile strength of the geopolymer samples was found to be 53% and 63% of the strength of the cement, but 5 and 9.5 times higher than the clay-based sample, respectively. The results showed that the use of polypropylene fibers in geopolymer samples containing 30 and 40% slag reduced water absorption, but compared to cement samples, they absorbed 95 and 72% more water after 72 hours. The coefficient of capillary absorption in all geopolymer samples was high, but the use of fibers in the sample containing 40% slag resulted in a 1% reduction in this coefficient compared to the non-fiber sample. Cracking resistance tests were conducted on the geopolymer samples, which showed that the samples containing 30 and 40% slag with fibers achieved 40 and 73% of the cracking resistance of the cement sample, respectively. The destruction resistance of the sample containing 30% slag with fibers was approximately 46% of the cement resistance, while the model containing 40% slag with fibers exhibited a 15% improvement relative to the cement sample.

کلیدواژه‌ها [English]

  • Geopolymer
  • Clinoptilolite soil
  • Slag
  • Alkaline Activators
  • Compressive and Tensile Strength
  • Water Absorption
  • Impact Resistance
  • Polypropylene Fibers
  1. Xu, Y., Chen, H,. Wang, P,. (2020). ‘Effect of Polypropylene Fiber on Properties of Alkali-Activated Slag Mortar’, Advances in Civil Engineering, vul 2020, p. 12.
  2. Saidi, T,. Hasan, M,. (2022). ‘The effect of partial replacement of cement with diatomaceous earth (DE) on the compressive strength and absorption of mortar’, Journal of King Saud University - Engineering Sciences, vol 34, pp. 250–259.
  3. Cebeci, Z., Al-Noury, S,. Mirza, W,. (1989). ‘Strength and drying shrinkage of masonary mortars in various temperature-humidity environments’, Cement and Concrete Research, vol 19(1), pp. 53–62.
  4. Taha, M., Feng, C,. Ahmed, S,. (2020). ‘Influence of Polypropylene Fibre (PF) Reinforcement on Mechanical Properties of Clay Soil’, Advances in Polymer Technology, vol 2020, p,15.
  5. Nikolov, A., Rostovsky, I,. Nugteren, H,. (2017). ‘Geopolymer materials based on natural zeolite’, Case Studies in Construction Materials,vol 6(March), pp. 198–205.
  6. Marsh, A,. Heath, P,. Patureau, M,. Evernden,. Walker, P,. (2018). ‘Alkali activation behaviour of un-calcined montmorillonite and illite clay minerals’, Applied Clay Science, vol 166(February), pp. 250–261.
  7. Yaghoubi, M,. Arulrajah, A,. Disfani, M,. Horpibulsuk, S,. Darmawan, S,. Wang, J,. (2019). ‘Impact of field conditions on the strength development of a geopolymer stabilized marine clay’, Applied Clay Science, vol 167(October), pp. 33–42.
  8. Zhang, B,. Yuan, P,. Guo, H,. Deng, L,. Li, Yun,. Li, Li,. Wang, Q,. (2021). ‘Effect of curing conditions on the microstructure and mechanical performance of geopolymers derived from nanosized tubular halloysite’, Construction and Building Materials, vol 268. Pp, 121-134.
  9. Yamchelou, M,. Law, D,. Brkljača, R,. Gunasekara, C,. Li, J,. Patnaikuni, I,. (2021). ‘Geopolymer synthesis using low-grade clays’, Construction and Building Materials, vonl 268, pp. 182-194
  10. Abdul, K,. Muhammad, R,. Ehsan, U,. Muhammad, AH,. Khurram, IK,. Muhammad, N,. Muhammad, A,. Arsalan, H,. Naveed,M,. Muhammad MA,. (2020). ‘Experimental evaluation of sustainable geopolymer mortars developed from loam natural soil’, Journal of Asian Architecture and Building Engineering, vol 19(6), pp. 637–646.
  11. Nmiri, A,. Hamdi, N,. Yazoghli, Marzouk,. Duc,M,. Srasra, E,. (2017). “Synthesis and characterization of kaolinite-based geopolymer: Alkaline activation effect on calcined kaolinitic clay at different temperatures,” Mater. Environ. Sci., vol. 8, pp. 276–290.
  12. Heah, C,. Kamarudin, H,. Mustafa, A,. Bnhussain, M,. Luqman, M,. Khairul, I,. Ruzaidi, C., (2013). ‘Kaolin-based geopolymers with various NaOH concentrations’, International Journal of Minerals, Metallurgy and Materials, vol 20, pp. 313–322.
  13. Merabtene, M., Kacimi, L,. Clastres, P,. (2019). ‘Elaboration of geopolymer binders from poor kaolin and dam sludge waste’, Heliyon, 5: 19-30
  14. Ramasamy, S,. Abdul, M,. Haq, E,. Hussaini, M,. Khan, K,. Nadeem, A,. Haq, A,. Navee, M,. (2015). ‘Recent dissertations on kaolin based geopolymer materials’, Reviews on Advanced Materials Science, 42: 83–91.
  15. Abdel Hadi, N., (2016). ‘Geo Polymerization of Kaolin and Metakaolin Incorporating NaOH and High Calcium Ash’, Earth Science Research, 5: 67-75
  16. Istuque, D,. Istuque, D,. Soriano, L,. Akasaki, J,. Melges, J,. Borrachero, M,. Monzó, J,. Payá, J,. (2019). ‘Effect of sewage sludge ash on mechanical and microstructural properties of geopolymers based on metakaolin’, Construction and Building Materials, 203, pp. 95–103
  17. Kaur, M,. Singh, J,. Kaur, M,. (2018). ‘Microstructure and strength development of fly ash-based geopolymer mortar: Role of nano-metakaolin’, Construction and Building Materials, 190: 672–679
  18. Ulloa, N,. Baykara, M,.Cornejo, A,. Rigail, C,. Paredes, V,. Villalba, J,. (2018) ‘Application-oriented mix design optimization and characterization of zeolite-based geopolymer mortars’, Construction and Building Materials, 174: 138–149
  19. Erfanimanesh, A,. Sharbatdar, M. K,. (2020) ‘Mechanical and microstructural characteristics of geopolymer paste, mortar, and concrete containing local zeolite and slag activated by sodium carbonate’, Journal of Building Engineering, 32(May): 101781.
  20. Dalvand, M. H., Sharbatdar, M. K,. Dalvand, A,. (2022). ‘Experimental investigation and statistical analysis on structural design and impact strengths of fiber geopolymer mortar’, 53(10): 947–950.
  21. C 33-99a.  ‘Standard Spesification for Concrete Aggregates,. Annual Book of ASTM Standards, i(C), pp. 1–11.
  22. C192. (2009). Making and Curing Concrete Test Specimens in the Laboratory, Engineered Concrete’. Annual Book of ASTM Standards
  23. C109. (2020). ‘Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens)’, Annual Book of ASTM Standards,
  24. C496. (2008). ‘Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens’, Annual Book of ASTM Standards,
  25. C642. (1997). ‘Standard Test Method for Density, Absorption, and Voids in Hardened Concrete’, Annual Book of ASTM Standards,
  26. C1585-13. (2013). ‘Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic Cement Concretes’, Annual Book of ASTM Standards,
  27. Karatas, M., Benli, A,. Arslan, F,. (2020). ‘The effects of kaolin and calcined kaolin on the durability and mechanical properties of self-compacting mortars subjected to high temperatures’, Construction and Building Materials, 265: 120300
  28. Muniswamappa, B,. Mohammad, F,. (2020), ‘Water Absorption Capacity of Concrete Cubes With Sorptivity Water Absorption of Coefficicnt International Research Journal of Engineering and    Technology, 7:88-96
  29. 544R. (2017). ‘Design Considerations for Steel Fiber Reinforced Concrete.’, ACI Structural Journal, 85: 563–580.
  30. Moradikhou, A. B,. Esparham, A,. (2021), ‘Water Absorption , Density , Mechanical Strengths and High-temperature Resistance of Metakaolin-based Geopolymer Concrete Reinforced with Hybrid Polyolefin and Simple Polypropylene Fibers’, Advance Researches in Civil Engineering, 3(2): pp; 1–15.
  31. Bhutta, A., Farooq, M,. Banthia, N,. (2019), ‘Performance characteristics of micro fiber-reinforced geopolymer mortars for repair’, Construction and Building Materials, 215: 605–612.
  32. Hossain, M,. Karim, M,. Elahi, A,.  Zain, M,. (2019). “Water absorption and sorptivity of alkali-activated ternary blended composite binder,” Build. Eng. 31: 101370
  33. Mohseni, E,. (2018). ‘Assessment of Na2SiO3 to NaOH ratio impact on the performance of polypropylene fiber-reinforced geopolymer composites’, Construction and Building Materials, 186: 904–911
  34. Baykara, H,. Cornejo, M,. Espinoza, H,. García, E,. Ulloa, N,. (2020). ‘Preparation, characterization, and evaluation of compressive strength of polypropylene fiber reinforced geopolymer mortars’, Heliyon, 6: 2020
  35. Islam, A,. Johnson, A,. Zamin, M,. Nurasyiqin, B,. Sumiani, Y,. Iftekhair, B,. (2017). ‘Influence of steel fibers on the mechanical properties and impact resistance of lightweight geopolymer concrete’, Construction and Building Materials, 152: 964–977