بررسی موردی اثر تغییرات فازهای کلینکر در عملکرد سیمان و بتن (بتن فاقد افزودنی و بتن دارای یک نمونه افزودنی فوق‌روان‌کننده)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 رئیس مرکز تحقیق و توسعه سیمان تهران

2 دکترای عمران، عضو هیئت علمی مرکز تحقیقات راه، مسکن و شهرسازی

چکیده

فازهای کلینکر، بر مشخصات فنی سیمان و عملکرد آن در بتن تاثیر قابل توجهی دارند، لیکن اطلاعات کافی برای تعیین میزان تاثیر هر یک از این فازها، جهت عملکرد مطلوب بتن در دسترس نیست. لذا در این مطالعه کاربردی به آن پرداخته شد و یک عملیات آزمایشگاهی طراحی گردید. در مرحله اول طی سه ماه، نمونه‌گیری مرتب از کلینکر دو کوره کارخانه سیمان تهران انجام شد. سپس 11 نمونه کلینکر (پرتلند نوع2) انتخاب شدند که مقادیر فازهای آنها نسبت به هم متفاوت بودند. طی مرحله دوم، سیمان‌سازی آزمایشگاهی در شرایط کاملا یکسان با استفاده از 11 نمونه کلینکر انجام شد. یک نمونه افزودنی فوق‌روان‌کننده نیز تهیه گردید. در مرحله سوم آنالیز فیزیکی و شیمیائی بر روی نمونه سیمان‌های آزمایشگاهی صورت گرفت. طی مرحله چهارم 22 مخلوط‌ بتنی با 11 نمونه سیمان تهیه گردید که روانی و اسلامپ آنها ثابت (در گروه اول 8 سانتی‌متر و در گروه دوم 12 سانتی‌متر) اعمال شد؛ بطوریکه 11 مخلوط با عنوان "بدون افزودنی" و 11 مخلوط با عنوان "دارای افزودنی" بودند. بر روی مخلوط‌های بتنی آزمایش‌های افت اسلامپ طی 1 ساعت، تعیین چگالی، تعیین درصد هوای بتن تازه، مقاومت فشاری بتن سخت شده 7، 28 و 90 روزه انجام شد. بر اساس نتایج حاصله، مقایسه تاثیر مقدار C3S کلینکر بر مقاومت فشاری ملات استاندارد و بتن نشان داد که رابطه مستقیم مقدار C3S و مقاومت فشاری (ملات و بتن) همبستگی مطلوبی ندارد؛ اما می‌توان گفت که با افزایش هر یک درصد C3S کلینکر، مقاومت 7 و 28روزه بتن حدود 5/1 واحد (کیلوگرم بر سانتی متر مربع) افزایش می‌یابد و با افزایش C3S از حدود 57% به بعد، افت مقاومت بتن مشاهده می‌شود که می‌توان به تاثیر منفی ازدیاد بیش از حد فاز C3S اشاره نمود. بر اساس نتایج آزمایش‌های تعیین درصد هوای مخلوطهای بتن تازه حاوی افزودنی و روند کاهش آن پس از30دقیقه مشخص گردید که مقدار بهینه C3A حدود 6-5% بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Case study of Effect of Clinker Phase Changes on Cement and Concrete Performance (Concrete without Additive and Concrete with a Sample of Super Plasticizer Additive)

نویسندگان [English]

  • Ali Akbar Kafash Bazari 1
  • Mehdi Chini 2
1 Chief of Laboratory of research and development of Tehran cement Co
2 Assistant Professor of Road, Housing and Urban Development Research Centre
چکیده [English]

Clinker phases have a significant effect on the technical characteristics of cement and its performance in concrete, but sufficient information is not available to determine the effect of each of these phases on the optimal performance of concrete. Therefore, in this practical essay, it was studied and a laboratory operation was designed. In the first stage, regular sampling of clinker from 2 kiln of Tehran cement factory was done in 3 months. Then 11 clinker samples (Portland type II) were selected which their phase values were different from each other. During the second stage, laboratory cementing was done in completely identical conditions using 11 clinker samples. A super plasticizer additive sample was also prepared. In the third stage, physical and chemical analysis was done on laboratory cement samples. During the fourth stage, 22 concrete mixes were prepared with 11 cement samples, and their slump were fixed (8cm in the first group and 12cm in the second group) so that 11 mixtures were labeled "without additives" and 11 mixtures were labeled "with additives". Slump loss tests within 1 hour, determination of density, determination of air content of fresh mixed concrete, compressive strength of 7, 28 and 90 days in hardened concrete were performed on concrete mixtures. Based on the results, the comparison of the effect of C3S amount of clinker on the compressive strength of standard mortar and concrete showed that the direct relationship between C3S amount and compressive strength (mortar and concrete) is not favorable; but it can be said that with each increase of C3S percentage of clinker, the 7 and 28 days strength of concrete increases by about 1.5 units (kg/cm2) and with the increase of C3S from about 57% onwards, a drop in concrete strength can be observed. These points out the negative effect of excessive increase of C3S phase. Based on the results of the tests which determine the percentage of air in fresh concrete mixes containing additives and its decrease after 30 minutes, it was determined that the optimal amount of C3A was about 5-6%.

کلیدواژه‌ها [English]

  • Alite
  • Aluminate
  • Cement
  • Concrete
  1. Herfort D &. Macphee D. (2019). Lea's Chemistry of Cement and Concrete (Fifth Edition). Pages 57-86
  2. اLind M Hills. (2007). “Clinker, Microstructure and Grind ability”.
  3. Neville AM, Brooks JJ (2002). “Concrete Properties”. Prentice Hall.
  4. Nuhu S. & Ladan S. & Muhamad A. (2020). ”Effects and Control of Chemical Composition of Clinker for Cement Production”. October 2020International Journal of Control Science and Engineering 10(1) (15-10-2020):16-21.
  5. N. Ghosh (1992), “concrete and science technology & Cement private limited".
  6. Memarian, H. (2009). "Engineering Geology and Geotechnics". University of Tehran Press.
  7. Kafash A. (2019). "A case study of the relationship between medium and long term strength of concrete to helping strength of buildings". 10th National Concrete Conference, 15 and 16 October 1397, Tehran.
  8. Bokaeeian M (1998). "Cement Engineering Handbook, Refractory Materials and Building Materials". Publications of Abyek Cement Industrial Complex Manpower Training Center.
  9. TALABER (1981). “FACTORS INFLUENCING THE QUALITY OF CEMENT”. Periodical Polytechnic Civil Engineering, 26(1-2), pp. 27-39, 1982.
  10. Neville AM, Brooks JJ (2002). “Concrete technology”. Prentice Hall.
  11. Odler (1991).” Strength of cement”. Materials and striations, 24, 143-157.
  12. Duda, W. (1977) "cement data book".
  13. Mehta, K. & Menterio, (2006). “Concrete Microstructure, Properties, and Materials”.
  14. Tadayon A. &, Golbahari, A. & Ahmadi, Z. (1394). "Handbook of new and special cements". Naghous Publications.
  15. Neville AM, Brooks JJ (2002). “Concrete Properties”. Prentice Hall
  16. Taylor, “Cement Chemistry”. 2th Edition, Thomas Telford Publication, London, 1998.
  17. Peukert, „Cementy powszechnego użytku i specjalne“, Polski Cement, 2000.
  18. Walter H. Duda. (1984). “Cement data book-volume II”. Third edition, p256.
  19. Tadayon, M. &. Rahmati, A. & Salami, E. "The relationship between concrete strength at different ages with different cements, 8th National Concrete Conference of Iran, Tehran, October 6 and 7, 2016.
  20. M. & Rahmati A. & Salami, E. & Pirhadi, B &. Salimi Moghaddam F. & Malikshahi I. "The role of the main compounds (phases) of cement on the initial and long-term strength of concrete". 15th National Concrete Day Conference and 9th Iran Concrete Conference, Tehran, October 6 and 7, 2016.
  21. Rahmati A.& Salami, E. "The relationship between the growth rate of mortar and concrete strength of 425-1 and 2 type cements with three calcium silicates (C3S) - Part 1" Cement Technology Monthly, 100 consecutive (December 2016), p. 11
  22. Rahmati A. & Salami, E. "The relationship between the growth rate of mortar and concrete strength of type 425-1 and 2 cements with C3S (Part 2)" Cement Technology Monthly, 101 (December 2016), p.113.
  23. Rabiee M. &, Moztarzadeh F. &, Solati Hashjin M. & Hesaraki Saeed. (2007). "Effect of liquid phase concentration on setting time and compressive strength of hydroxyapatite bone cement". Journal of Biomedical Engineering, Summer 2007, Volume 1, Number 2, Pages 110-105.
  24. -Ali Mardani Aghabaglou & Burak Felekoğl & Kambiz Ramyar. (2017). “Effect of Cement C3A Content on Properties of Cementitious Systems Containing High-Range Water-Reducing Admixture”. Journal of Materials in Civil Engineering, Volume 29 Issue 8 - August 2017
  25. Sinan T.Erdoğan (2013). “Effect of clinker phase distribution within cement particles on properties of a hydrating cements paste”. Construction and Building Materials, Volume 38, January 2013, Pages 941-949.
  26. Dipak Prasad, Nilanjan Mitra. (2022) “Surface Reactivity of Cementitious Crystals Alite and Belite”. The Journal of Physical Chemistry C 2022, 126 (27), 11265-11276.
  27. Lei Liu, Wensheng Zhang, Xuehong Ren, Jiayuan Ye, Jiangtao Zhang, Zhongtao Luo, Jueshi Qian. Sintering behaviour and structure-thermal stability relationships of alkali-doped ternesite. Cement and Concrete Research 2023, 164, 107043.
  28. Tavakoli D. & Tarighat A. (2016). “Molecular dynamics study on the mechanical properties of Portland cement clinker phases”. Computational Materials Science, Volume 119, 15 June 2016, Pages 65-73
  29. INSO 11267 (2016). “Aggregate- Sampling aggregates- Code of practice" Institute of Standards and Industrial Research.
  30. INSO 7146 (2018). "F Aggregate-Reducing samples of aggregate to testing size -Code of practice" Institute of Standards and Industrial Research.
  31. INSO 1692 (1992). "Hydraulic cements - chemical test methods - measurement of main elements" Institute of Standards and Industrial Research.
  32. INSO 389 (2019). "Portland Cement-Properties". National Standard Organization of Iran
  33. INSO 18807-6 (2013). "Methods of testing Cement - Part 6: Determination of fineness" Institute of Standards and Industrial Research.
  34. INSO 390 (2009). "Cement- Determination of the fineness of hydraulic cement by air-permeability apparatus-Test methods" Institute of Standards and Industrial Research.
  35. INSO 18807-3 (2013). "Methods of testing cement - Part 3: Determination of setting times and soundness (expansion) by Le Chatelier method" Institute of Standards and Industrial Research.
  36. INSO 392 (2021). "Cement — Determination the time of setting of hydraulic cement by Vicat needle- Test method" Institute of Standards and Industrial Research.
  37. INSO 11895 (2009). "Cement- Determination of the normal consistency of hydraulic cement - Test Method" Institute of Standards and Industrial Research.
  38. INSO 18807-1 (2013). "Methods of testing cement - Part 1: Determination of strength" Institute of Standards and Industrial Research.
  39. INSO 3203-2 (2008). "Fresh concrete –Part 2: Determining the consistency by the slump – Test method" Institute of Standards and Industrial Research.
  40. INSO 581 (2013). "Concrete – Making and curing concrete test specimens in the laboratory – Code of Practice" Institute of Standards and Industrial Research.
  41. "Guide to the National Method of Concrete Mixing Design", Building and Housing Research Center, p33.
  42. INSO 15904 (2017). "Fresh concrete- Determination of air content of freshly mixed concrete by the pressure method- Test method" Institute of Standards and Industrial Research.
  43. INSO 3203-6 (2018). "Fresh concrete – Part 6: Density –Test method" Institute of Standards and Industrial Research.
  44. INSO 1608-3 (2015). "Hardened Concrete-Part 3: Compressive Strength of Test Specimens- Test Method" Institute of Standards and Industrial Research.