بررسی آزمایشگاهی اثر افزودن نانوسیلیس بر خواص مکانیکی و دوام بتن ژئوپلیمر سرباره ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری عمران سازه، گروه مهندسی عمران، واحد چالوس، دانشگاه آزاد اسلامی، چالوس، ایران.

2 استادیار گروه مهندسی عمران، واحد چالوس، دانشگاه آزاد اسلامی، چالوس، ایران.

3 استادیار گروه مهندسی عمران، دانشگاه ازاد اسلامی واحد لاهیجان،لاهیجان،ایران

چکیده

امروزه، بکارگیری از نانو مواد در علوم مختلف چشم انداز گسترده ای پیدا کرده است. در این راستا، افزودنی هایی در مقیاس نانو در صنعت بتن با هدف بهبود خواص مکانیکی و دوام بتن، مورد توجه محققان قرار گرفته دارد. در تهیه بتن ژئوپلیمری، مصالحی حاوی مواد آلومینوسیلیکاتی فراوان با محلول قلیایی ترکیب می شوند. در این پژوهش آزمایشگاهی به ساخت یک طرح اختلاط از بتن شاهد حاوی سیمان پرتلند پرداخته شد. سپس بتن ژئوپلیمر سرباره ای در سه طرح اختلاط حاوی 0، 4 و 8 درصد نانوسیلیس ساخته شد (در مجموع 4 طرح اختلاط). در ادامه، آزمون تصویربرداری میکروسکوپ الکترونی (SEM) در سن عمل آوری 90 روزه و آزمون های نفوذپذیری آب، مقاومت فشاری و مدول الاستیسیته در سن عمل آوری 7 و 28 روزه در دمای اتاق، بر روی نمونه های بتنی انجام شد. نتایج آزمایشگاهی حاکی از این موضوع است که افزایش سن عمل آوری بتن، موجب بهبود نتایج مقاومت فشاری، مدول الاستیسیته و نفوذپذیری آب شده است. در آزمون های نفوذپذیری آب، مدول الاستیسیته و مقاومت فشاری، افزودن 8 درصد نانوسیلیس به ترکیب بتن ژئوپلیمری، به ترتیب موجب بهبود 26، 13 و 19 درصدی نتایج نسبت به طرح بتن ژئوپلیمری فاقد نانوسیلیس در سن 28 روزه پس از عمل آوری گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Investigation of the Effect of Nanosilica on the Mechanical Properties and Durability of Slag Geopolymer Concrete

نویسندگان [English]

  • Mohammadhossein Mansourghanaei 1
  • Morteza Biklaryan 2
  • Alireza Mardookhpour 3
1 *- Ph.D Student in Civil Engineering, Department of Civil Engineering, Chalous Branch, Islamic Azad University, Chalous, Iran. Mhm.ghanaei@iauc.ac.ir
2 Assistant Professor Department of Civil Engineering, Chalous Branch, Islamic Azad University, Chalous, Iran.
3 Assistant Professor Department of civil engineering,islamic azad university,lahijan branch,iran
چکیده [English]

Today, the use of nanomaterials in various sciences has found a wide perspective. In this regard, nanoscale additives in the concrete industry with the aim of improving the mechanical properties and durability of concrete, have been considered by researchers. In the preparation of geopolymer concrete, materials containing abundant aluminosilicate materials are combined with alkaline solution. In this laboratory study, a mixing design was made of control concrete containing Portland cement. Then, slag geopolymer concrete was made in three mixing designs containing 0, 4 and 8% nanosilica (4 mixing designs in total). Then, SEM test at 90 days of curing age and tests of water permeability, compressive strength and modulus of elasticity at 7 and 28 days of curing at room temperature were performed on concrete samples. Laboratory results indicate that increasing the curing age of concrete has improved the results of compressive strength, modulus of elasticity and water permeability. In the test of water permeability, modulus of elasticity and compressive strength, the addition of 8% nanosilica to geopolymer concrete improved the results by 26, 13 and 19%, respectively, compared to the design of nanosilica-free geopolymer concrete at 28 days after curing.

کلیدواژه‌ها [English]

  • Geopolymer Cconcrete
  • Blast Furnace Slag
  • Nano silica
  • Mechanical Properties
  • Durability Concrete
[1] Nosrati, A., Zandi, Y., Shariati, M., Khademi, K., Aliabad, M. D., Marto, A., ... & Khorami, M. (2018). Portland cement structure and its major oxides and fineness. Smart structures and systems22(4), 425-432.‏
[2] Nuaklong, P., Sata, V., & Chindaprasirt, P. (2016). Influence of recycled aggregate on fly ash geopolymer concrete properties. Journal of Cleaner Production112, 2300-2307.‏
[3] Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya, S. K. (2015). Geopolymer concrete: A review of some recent developments. Construction and building materials85, 78-90.‏
[4] Zhuang, X. Y., Chen, L., Komarneni, S., Zhou, C. H., Tong, D. S., Yang, H. M., ... & Wang, H. (2016). Fly ash-based geopolymer: clean production, properties and applications. Journal of Cleaner Production125, 253-267.‏
[5] Ryu, G. S., Lee, Y. B., Koh, K. T., & Chung, Y. S. (2013). The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Construction and building materials47, 409-418.‏
[6] Mehdipour, S., Nikbin, I. M., Dezhampanah, S., Mohebbi, R., Moghadam, H., Charkhtab, S., & Moradi, A. (2020). Mechanical properties, durability and environmental evaluation of rubberized concrete incorporating steel fiber and metakaolin at elevated temperatures. Journal of Cleaner Production254, 120126.‏
[7] Davidovits, J. (2008). Geopolymer chemistry and applications. Institut Géopolymère, Geopolymer Institute, Saint-Quentin, France. ISBN 2-951-14820-1-9.‏
[8] Neupane, K., Chalmers, D., & Kidd, P. (2018). High-strength geopolymer concrete-properties, advantages and challenges. Advances in Materials7(2), 15-25.‏
[9] Duan, P., Shui, Z., Chen, W., & Shen, C. (2013). Enhancing microstructure and durability of concrete from ground granulated blast furnace slag and metakaolin as cement replacement materials. Journal of Materials Research and Technology2(1), 52-59.‏
[10] Yunsheng, Z., Wei, S., & Zongjin, L. (2010). Composition design and microstructural characterization of calcined kaolin-based geopolymer cement. Applied Clay Science47(3-4), 271-275.‏
[11] Assaedi, H., Alomayri, T., Shaikh, F., & Low, I. M. (2019). Influence of nano silica particles on durability of flax fabric reinforced geopolymer composites. Materials12(9), 1459.‏
[12] Scrivener, K., & R. James, K. (2008). Innovation in use and research on cementitious material. Cement and concrete research, 38(2), 128-136.
[13] Li, H., Xiao, H., Yuan, J., & OU, J. (2004). Microstructure of cement mortar with nano-particles. Composites Part B: Engineering, 35(2), 185-189.
[14] Adak, D., Sarkar, M., & Mandal, S. (2017). Structural performance of nano-silica modified fly-ash based geopolymer concrete. Construction and Building Materials, 135, 430-439.
[15] Delavari, S., Jahanger, H., & Daneshvar, M. (2018). Comparison the Effect of Particle Tires and Powder of Worn Tires on Compressive Strength of Concrete (In Persian). 4th International Conference on Structural Engineering. Iran,Tehran.
[16] Tajodeni, M. (2016). , In vitro evaluation of the effect of adding nanosilica with different specific surfaces on physical and mechanical parameters of soil-cement aggregates. Sharif Journal of Civil Engineering, 24-2(1/1), 13-22.
[17] Shirgir, B., Alizadeh Goudarzi, H., & Shirgir, V. (2016). An Experimental Study on the Abrasion Resistance of Pervious Concrete Containing Nano SiO2 in avement. Quarterly Journal of Transportation Engineering8(2), 291-302. ‏
[18] Deb, P. S., Sarker, P. K., & Barbhuiya, S. (2015). Effects of nano-silica on the strength development of geopolymer cured at room temperature. Construction and building materials101, 675-683.‏
[19] Ekinci, E., Türkmen, İ., Kantarci, F., & Burhan Karakoç, M. (2019). The improvement of mechanical, physical and durability characteristics of volcanic tuff based geopolymer concrete by using nano silica, micro silica and Styrene-Butadiene Latex additives at different ratios. Construction and Building Materials, 201, 257-267.
[20] Malkawi, A. B., Nuruddin, M. F., Fauzi, A., Almattarneh, H., & Mohammed, B. S. (2016). Effects of alkaline solution on properties of the HCFA geopolymer mortars. Procedia engineering148, 710-717. ‏
[21] Ekinci, E., Türkmen, İ., Kantarci, F., & Karakoç, M. B. (2019). The improvement of mechanical, physical and durability characteristics of volcanic tuff based geopolymer concrete by using nano silica, micro silica and Styrene-Butadiene Latex additives at different ratios. Construction and Building Materials201, 257-267.‏
[22] Dabbagh, H., & Akbarpour, S. (2017). Behavior of Structural Lightweight Concrete Containing Nano Silica and Steel Fibers under Compressive Monotonic Loading. Concrete Research10(1), 35-46.
[23] Deb, P. S., Sarker, P. K., & Barbhuiya, S. (2015). Effects of nano-silica on the strength development of geopolymer cured at room temperature. Construction and building materials101, 675-683.‏
[24] Shih, J. Y., Chang, T. P., & Hsiao, T. C. (2006). Effect of nanosilica on characterization of Portland cement composite. Materials Science and Engineering: A424(1-2), 266-274.‏
[25] Mehta, P. K., & Monteiro, P. J. (2014). Concrete: microstructure, properties, and materials. McGraw-Hill Education.
[26] Banthia, N. Biparva, A. and Mindess, S. (2005). Permeability of concrete under stress. Cement and Concrete Research, No. 35, pp. 1651 – 1655.
[27] Building and Housing Research Center, N. Issue: 428, National durability of concrete code in Persian Gulf and Oman Sea, P.P. 34-35, 2014.
[28] Moghaddam, S. C., Madandoust, R., Jamshidi, M., & Nikbin, I. M. (2021). Mechanical properties of fly ash-based geopolymer concrete with crumb rubber and steel fiber under ambient and sulfuric acid conditions. Construction and Building Materials281, 122571.‏
[29] Prasanna Venkatesan, R., & Pazhani, K. (2016). Strength and durability properties of geopolymer concrete made with Ground Granulated Blast Furnace Slag and Black Rice Husk Ash. KSCE Journal of Civil Engineering, 20(6), 2384-2391.
[30] Nofallah, M. H. (2018). Effect of sodium Hydroxide solution concentration and sodium silicate to sodium hydroxide ratio on the compressive strength and water absorption of slag based alkali-activated concrete. Concrete Research11(2), 95-103.‏
[31] Abd elaty, M.a.a. (2014). Compressive strength prediction of Portland cement concrete with age using a new model. HBRC J. 10 (2), pp 145–155.
[32] Kim, J.K., Moon, Y.H., Eo, S.H. (1998). Compressive strength development of concrete with different curing time and temperature. Cem. Concr. Res. 28 (12), pp 1761–1773.
[33] Madandoust, R., Bungey, J.H., Ghayidel, R. (2012). Prediction of the concrete compressive strength by means of core testing using GMDH-type neural network and ANFIS models. Comput. Mater. Sci. 51 (1), pp 261–272
[34] Pirmohammadi Alishah, F., & Mahmoudzadeh, N. (2020). Investigation of the effect of bentonite paste index on modulus of elasticity, compressive strength and performance of plastic concrete. Civil and Project Journal2(5), 87-109.‏
[35] Madandoust, R., & Deilami Poshtjouei, S. (2021). A study on compressive strength, static and dynamic elastic modulus of self-compacted concrete contained nanomaterials. Journal of Structural and Construction Engineering8(1), 256-270.‏
[36] Komasi, M., Khosravi, S., & Chobkar, H. (2021). Laboratory study for optimal mixing scheme of pervious concrete containing additive of microsilica fume based on maximum compressive strength and permeability. Journal of Structural and Construction Engineering7(4), 42-61.‏
[37] Kwan, W. H., Ramli, M., Kam, K. J., & Sulieman, M. Z. (2012). Influence of the amount of recycled coarse aggregate in concrete design and durability properties. Construction and Building Materials26(1), 565-573. ‏
[38] Ramezaniyanpor, A. (2012). Comparative Study on Microstructure and Durability of Concretes Containing Nano Silica and Silica Fume. Amirkabir Journal of Civil Engineering, 44(1), 65-75. doi: 10.22060/ceej.2012.98
  • تاریخ دریافت: 27 اسفند 1400
  • تاریخ بازنگری: 17 خرداد 1401
  • تاریخ پذیرش: 11 شهریور 1401
  • تاریخ اولین انتشار: 11 شهریور 1401