تاثیر افزودن ترکیب مواد سیمانی زئولیت و میکروسیلیس در مقاومت فشاری و خمشی و قیمت تمام شده بتن سبک سازه‌ای حاوی پلی استایرن منبسط شونده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه سمنان

2 استاد، دانشکده مهندسی عمران، دانشگاه سمنان

3 استاد ممتاز، دانشکده مهندسی عمران، دانشگاه سمنان

چکیده

یکی از معایب مهم ساختمان‌های بتنی وزن بسیار زیاد ساختمان می‌باشد که با میزان تخریب ساختمان در اثر زلزله نسبت مستقیم دارد، لذا به‌کارگیری مصالح نوین سبک با رویکرد مقاومتی از زمینه‌های تحقیقاتی می‌باشد. در این مقاله، تأثیر جایگزینی پلی استایرن به‌جای سنگ‌دانه ها در وزن مخصوص بتن و همچنین افزودن میکروسیلیس و زئولیت و تأثیر آن در مقاومت بتن بررسی می‌گردد. سه طرح اختلاط شامل زئولیت، میکروسیلیس و پلی استایرن به‌صورت نمونه‌های مکعبی و استوانه‌ای جهت آزمایش مقاومت فشاری و نمونه‌های تیرهای منشوری جهت آزمایش مقاومت خمشی و تعیین مدول خمشی ساخته شدند. پس از انجام آزمایش‌ها و تجزیه و تحلیل نتایج در ترکیب 20 درصد زئولیت و 5 درصد میکروسیلیس، بتنی با وزن مخصوص حدود 1756کیلوگرم بر مترمکعب (جمع مولفه‌ها) و مقاومت فشاری 28 روزه با نمونه استوانه ای برابر 27 مگاپاسکال بدست آمد که نوعی بتن سبک سازه‌ای مطابق آئین نامه های معتبر است. ضمنا مقایسه هزینه های ساختمان مسکونی بتن معمولی و بتن سبک طراحی شده براساس خروجی‌ها نشان‌دهنده اثرپذیری سازه‌ای و اقتصادی بتن پیشنهادی و کاهش تا حدود 10 درصدی هزینه های کل مصالح بتنی و میلگردها و اجرای اسکلت بتنی مسلح بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of adding Combined Cementitious Zeolite and Silica Fume on Compressive and Flexural Strengths and the Final Cost of Structural Light Weight Concrete Containing Expanded Polystyrene

نویسندگان [English]

  • Ali Yari 1
  • Mohammad Kazem Sharbatdar 2
  • Ali Kheyroddin 3
1 Semnan University
2 Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran. (Corresponding Author)
3 Distingushed Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
چکیده [English]

The high weight is one of the most important deficient of any building that has a direct role at damages caused during an earthquake, so the application of new lightweight material is one of the attractive research issues. The effectiveness of replacing Polystyrene instead of regular aggregates on its density and also adding silica fume and zeolite and its effectiveness on concrete strength were investigated in this paper. Three mix designs consisting of zeolite, silica fume, and polystyrene on cubic, cylinder compressive specimen, and flexural beam specimens were cast and tested. The test results indicated that the mix design with 20% zeolite and 5% silica fume gave concrete with a special density equal 1756 kilogram per cubic meter and cylinder compressive strength equal 27 MPa, indicating one special structural high-strenght lightweight concrete. In addition, the complete structural design results showed that the total costs of building cast with structural lightweight concrete (concrete, steel bars, and casting cost) was almost 40% less than of regular reinforced concrete building.

کلیدواژه‌ها [English]

  • Structural Light Weight Concrete
  • Zeolite
  • Silica Fume
  • Polystyrene
  • Compressive Strength
  1.  

    1. Feng, N., 2005. “Applications of natural zeolite to construction and building materials in China”, Construction and Building Materials 19:579–584.
    2. Manifipour, M., Rapel, M., 1391. “Experimental Investigation of silica fume effect on compressive strength of light-weight concrete”, 8 th International Civil Eng Conference, Isfahan, Iran. (in Persian)
    3. Khodaparast, M., Ashrafian, S.M., 1391. “Silica fume application effect on making light-weight concrete”, 8 th International Civil Eng Conference, Isfahan, Iran. (in Persian)
    4. Iranian National Building Codes Compilation Office. Iranian National Building Code, Part 9: Reinforced Concrete Buildings Design, Ministry of Road and Urban Development, 2020. (in Persian)
    5. Entezari, A.R., Esmahili, J., 1389. “Investigation of mechanical charachteristics of structural light-weight concrete”, Civil Eng and Environment Journal, Vol 40, No 2. (in Persian)
    6. Sadrmomtazi, A., Nosrati, H., 1392. “Investigation of design equations of RC structural light-weight concrete beam containing light-weight clay aggregate”, Iran Concrete Research, No2. (in Persian)
    7. K. Mehta, P.J.M. Monteiro, 2014. “Concrete: Microstructure, Properties, and Materials”, 4th Edition ed., McGraw-Hill, USA.
    8. Jebel-Hameri, B., Shehrbaf, M.R., Sedaghat doust, A., 1391. “Investigation of Silica fume effect on mechanical charachteristics and durability of structural light-weight concrete”, First national conference of Concret Industry. (in Persian)
    9. Basirat, Sh., Homrani, M., Behforouz, B., 1397. “Investigation of Silica fume effect on compressive strength water absorption of structural light-weight concrete”, Strucrure and Construction Journal. No 2. (in Persian)
    10. Cejka, J., Van Bekkum, H. Corma, A. and Schueth, F., 2007. “Introduction to zeolite molecular SIEVES”, Edition: 3, Publisher: Elsevier.
    11. Margeta, K., Zabukovec Logar,N., Šiljeg,N., and Farkaš,A., “Natural Zeolites in Water Treatment – How Effective is Their Use”, ISBN 978-953-51-0928-0, Published: January 16, 2013.
    12. Bu lent, Y., Uc-arb, A., Teyakab, B., Uza, V., 2007. “Properties of zeolitic tuff (clinoptilolite) blended ortland cement”, Building and Environment 42:3808–3815.
    13. H., 2003. “Zeolite photochemistry: impact of zeolites on photochemistry and feedback from photochemistry to zeolite science”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4:19–49.
    14. Shekarchizade, M., Eftekharnezhad, J., Ahmadi, B., 1388. “ Improvement of concrete properties with admixtures”, Technical report, Teharn Unuversity. (in Persian)
    15. Najimi, M., Sobhani, J., Ahmadi. B., and Shekarchi, M., 2012. “An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan”, Construction and Building Materials 35:1023–1033.
    16. Byung-Wan Jo, Ji-Sun Choi, Kwang-Won Yoon and Jung-Hoon Park, 2012. “Material characteristics of zeolite cement mortar”, Construction and Building Materials 36:1059–1065.
    17. Uzal, B., and Turanlı, L., 2012. “Blended cements containing high volume of natural zeolites: Properties, hydration and paste microstructure”, Cement & Concrete Composites 34:101–109.
    18. Ahmadi, B. and Shekarchi, M., 2010. “Use of natural zeolite as a supplementary cementitious material”, Cement & ConcreteComposites 32:134–141.
    19. Karakurt, C, and Bekir Topcu, I., 2011. “Effect of blended cements produced with natural zeolite and industrial by-products on alkalisilica reaction and sulfate resistance of concrete”, Construction and Building Materials 25:1789–1795.
    20. Perraki, Th, Kakali,G., and Kontoleon,F., 2003. “The effect of natural zeolites on the early hydration”, Microporous and Mesoporous Materials 61:205–212.
    21. Perraki, T, Kontori, E., Tsivilis, S., and Kakali, G.,2010. “The effect of zeolite on the properties and hydration of blended cements”, Cement and Concrete Composites 32:128–133.
    22. Poon, C.S, Lam, L., Kou, S.C. and. Lin, Z.S., 1999. “A study on the hydration rate of natural zeolite blended cement pastes”, Construction and Building Materials 13:427-432.
    23. Caputo, D, Liguori, B., and Colella, C., 2008. “Some advances in understanding the pozzolanic activity of zeolites: The effect of zeolite structure”, Cement & Concrete Composites 30:455–462.
    24. Chan, Sammy Y.N and Xihuang Ji, 1999. “Comparative study of the initial surface absorption and chloride diffusion of high performance zeolite, silica fume and PFA concretes”, Cement & Concrete Composites 21:293-300.
    25. Ikotun, B.D and Ekolu, S., 2010. “Strength and durability effect of modified zeolite additive on concrete properties”, Construction and Building Materials 24:749–757.
    26. Quanlina, N., and Naiqian, F., 2005. “Effect of modified zeolite on the expansion of alkaline silica reaction”, Cement and Concrete Research 35:1784– 1788.
    27. Ghourchian, S., Wyrzykowski, M., Lura, P., Shekarchi, M., and Ahmadi, B., 2013. “An investigation on the use of zeolite aggregates for internal curing of concrete”, Construction and Building Materials 40:135–144.
    28. Provis, J.L., Grant C. Lukey and Jannie S. J. van Deventer, 2005. “Do Geopolymers Actually Contain Nanocrystalline Zeolites? A Reexamination of Existing Results”, Chem. Mater., 17:3075-3085.
    29. Ban, Sh., “Computer Simulation of Zeolites: Adsorption, Diffusion and Dealumination, Zeolite”, PhD Thesis., 2005.
    30. Ramezanianpour, A.A., 1389. “Cement and Pozolane Roles on concrete durability and sustainable development”, Internation conference on Concrete, Tehran, Iran. (in Persian)
    31. ASTM (American Society for Testing and Materials) C 39, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM Publication.