استفاده از بنتونیت در جایگزینی بخشی از سیمان در بتن‌های کم مقاومت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مهندسی عمران، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

2 دانشیار دانشکده مهندسی عمران دانشگاه سمنان

3 دانشیار دانشکده مهندسی عمران دانشگاه سمنان,

چکیده

استفاده از مواد پوزولانی در ساخت بتن، راه‌حل مناسبی برای کاهش منابع انرژی، تولید گازهای گلخانه‌ای و مصرف سیمان می‌باشد. در این مقاله تاثیر استفاده از بنتونیت سمنان به جای بخشی از سیمان در بتن‌های کم مقاومت بررسی شده است. در این مقاله 10 طرح مخلوط به همراه طرح مخلوط نمونه کنترل ساخته و مقایسه شده است. متغیر اصلی، تغییر نسبت بنتونیت به وزن سیمان می‌باشد که درصدهای 5، 10، 15، 20، 25، 30، 35، 40، 45 و50 در نظر گرفته شده است. آزمایش‌های مقاومت فشاری و مقاومت کششی دو نیم شدن نمونه‌ها، برای بررسی خواص بتن، انجام شده است.
با توجه به نتایج آزمایش مقاومت فشاری، استفاده از بنتونیت به جای بخشی از سیمان (مقاومت فشاری نمونه 5BC، MPa 1۷/20) باعث افزایش 7/2% مقاومت فشاری نسبت به نمونه شاهد (مقاومت فشاری نمونه CM، MPa 62/19) شده است. با جایگزین کردن 50% بنتونیت نسبت به وزن سیمان (نمونه 50BC)، مقاومت فشاری به میزان 40% کاهش یافته است. با توجه نتایج در مخلوط‌های حاوی بنتونیت در صورتی که مقدار بنتونیت بیش از 25% وزن سیمان شود، مقاومت کششی تا70% نسبت به CM کاهش می‌یابد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Utilization of bentonite as partial replacement of cement in low-strength concrete

نویسندگان [English]

  • Seyedeh Marzieh Qiyami Taklymi 1
  • Omid Rezaifar 2
  • Majid Gholhaki 3
1 M.Sc., Structural Engineering, Faculty of Civil Engineering, Semnan University, Semnan, Iran
2 Associate professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
3 Associate professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
چکیده [English]

Using pozzolanic materials in concrete manufacturing is intended as an optimal solution to lower the rate of greenhouse gas emission, and diminish energy resources and cement consumption. This research is aimed at evaluating Semnan bentonite as partial replacement of cement in low-strength concrete.
Ten bentonite mixes and control mix were examined. The main variable is the proportion of bentonite (5%, 10%, 15%, 20%, 25%, 30% , 35%, 40%, 45% and 50% by weight of cement) in replacement mode while the amount of cementitious material, water to cementitious material ratio, fine aggregate content were kept constant. To study properties of hardened concrete, compressive strength and splitting tensile strength tests were performed.
According to the results of compressive strength test, using bentonite (compressive strength of 5BC sample is 20.17 MPa) results in 2.7% increase in compressive strength as compared with the control mix (compressive strength of control mix CM is 19.62 Mpa). By replacing 50% of bentonite with the weight of cement (sample 50BC), the compressive strength is reduced by 40%. According to the results in mixtures containing bentonite, if the amount of bentonite is more than 25% by weight of cement, the tensile strength is reduced by 70% compared to CM.

کلیدواژه‌ها [English]

  • : Pozzolanic Materials
  • Bentonite
  • Low Strength Concrete
  • Compressive Strength
  • Tensile Strength
1.        Yılmaz M, Bakış A. Sustainability in Construction Sector. Procedia - Soc Behav Sci. 2015;195:2253–62.
2.        Oikonomou ND. Recycled concrete aggregates. Cem Concr Compos. 2005;27(2):315–8.
3.        Marinković S, Dragaš J, Ignjatović I, Tošić N. Environmental assessment of green concretes for structural use. J Clean Prod. 2017;154:633–49.
4.        Bouzoubaa N, Zhang MH, Malhotra VM. Mechanical properties and durability of concrete made with high-volume fly ash blended cements using a coarse fly ash. Cem Concr Res. 2001;31(10):1393–402.
5.        Lübeck A, Gastaldini ALG, Barin DS, Siqueira HC. Compressive strength and electrical properties of concrete with white Portland cement and blast-furnace slag. Cem Concr Compos. 2012;34(3):392–9.
6.        Huang C-H, Lin S-K, Chang C-S, Chen H-J. Mix proportions and mechanical properties of concrete containing very high-volume of Class F fly ash. Constr Build Mater. 2013;46:71–8.
7.        Nagrockiene D, Pundienė I, Kicaite A. The effect of cement type and plasticizer addition on concrete properties. Constr Build Mater. 2013;45:324–31.
8.        Onyelowe KC, Amhadi T, Ezugwu C, Ugwuanyi H, Iro U, Jideofor I, et al. Strength of pozzolan soil blend in chemically improved lateritic soil for pavement base material purpose. Int J Low-Carbon Technol. 2019;14(3):410–6.
9.        Trümer A, Ludwig H-M, Schellhorn M, Diedel R. Effect of a calcined Westerwald bentonite as supplementary cementitious material on the long-term performance of concrete. Appl Clay Sci. 2019;168:36–42.
10.      Zhang L, De Schryver P, De Gusseme B, De Muynck W, Boon N, Verstraete W. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. Water Res. 2008;42(1–2):1–12.
11.      Noeiaghaei T, Mukherjee A, Dhami N, Chae S-R. Biogenic deterioration of concrete and its mitigation technologies. Constr Build Mater. 2017;149:575–86.
12.      Heidari A, Hashempour M, Tavakoli D. Using of backpropagation neural network in estimating of compressive strength of waste concrete. Soft Comput Civ Eng. 2017;1(1):54–64.
13.      Polder RB. Effects of slag and fly ash on reinforcement corrosion in concrete in chloride environment: Research from the Netherlands. Heron, 57 3. 2012;
14.      Caballero CE, Sanchez Ε, Cano U, Gonzalez JG, Castano V. On the effect of fly ash on the corrosion properties of reinforced mortars. Corros Rev. 2000;18(2–3):105–12.
15.      Aydın S, Yiğiter H, Baradan B. Sulfuric acid resistance of high-volume fly ash concrete. Build Environ. 2007;42(2):717–21.
16.      Goyal S, Kumar M, Sidhu DS, Bhattacharjee B. Resistance of mineral admixture concrete to acid attack. J Adv Concr Technol. 2009;7(2):273–83.
17.      Mane KM, Kulkarni DK, Prakash KB. Prediction of Flexural strength of Concrete Produced by Using Pozzolanic Materials and Partly Replacing NFA by MS. J Soft Comput Civ Eng [Internet]. 2019 Apr 1 [cited 2019 Nov 16];3(2):69–77. Available from: http://www.jsoftcivil.com/article_95795.html
18.      Qiyami Taklimy SM, Rezaifar.Omid, Gholhaki M. Effect of Substitution of Natural Calcareous and Clay Materials with Cement in Low-Carbon Concretes. Transp Infrastruct Eng (JTIE)-(In Persian) [Internet]. 2019;5(4):40–9. Available from: https://jtie.semnan.ac.ir/article_4174.html
19.      Astm C. ASTM-C618. 2010.
20.      Moghanloo R, Aghajani H. Study of the effect of bentonite and cement on the strength and permeability of plastic concrete in laboratory conditions (In Persian). In 2013.
21.      Faday M, Nekoiy M, Javadi P. Investigation of the effects of dry and saturated bentonite on the compressive strength of plastic concrete (In Persian) [Internet]. 2nd National Conference on Applied Researches in Structural Engineering and Construction Management. Tehran: University Sharif; 2018. Available from: https://www.civilica.com/Paper-SECM02-SECM02_006.html
22.      Khaloo A, Bahadori S. Parameters Influencing Behavior of plastic Concrete (In Persian). In: The 1st Seminar on Erth & Rockfill Dams. Tehran; 1997. p. 334–45.
23.      Khaloo A. Parameters Influencing Behavior of plastic Concrete (In Persian). Tehran: Sharif University of Technology; 1996.
24.      Memon SA, Arsalan R, Khan S, Lo TY. Utilization of Pakistani bentonite as partial replacement of cement in concrete. Constr Build Mater. 2012;30:237–42.
25.      Reddy GVK, Rao VR, Reddy MAK. Experimental investigation of strength parameters of cement and concrete by partial replacement of cement with Indian calcium bentonite. Int J Civ Eng Technol. 2017;8(1):512–8.
26.      Abbaslou H, Tavana Amlashi A, Ghanizadeh A, Azemi S. Effects of mixing design and curing time on compressive and tensile strength of bentonite plastic concrete (In Persian). Concr Res. 2017;10(2):109–24.
27.      ASTM C. ASTM-C 136: Standard test method for sieve analysis of fine and coarse aggregates. 2006.
28.      ASTM C. ASTM-C128: Standard test method for specific gravity and absorption of. 2001;
29.      BSI. BS EN 12390-3: 2009: Testing hardened concrete. Compressive strength of test specimens. BSI London, UK; 2011.
30.      ASTM C. Standard test method for splitting tensile strength of cylindrical concrete specimens. 496, editor. 2011.
31.      ASTM C. ASTM-C143: Standard test method for slump of hydraulic cement concrete, ASTM International, West Conshohocken, PA, USA. Vol. 4. 1996.
32.      Standard A. C311-07: Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete. Annu B ASTM Stand. 2007;
33.      Marsh BK, Day RL. Pozzolanic and cementitious reactions of fly ash in blended cement pastes. Cem Concr Res. 1988;18(2):301–10.
34.      Monteiro P. Concrete: microstructure, properties, and materials. McGraw-Hill Publishing; 2006.
35.      Mehta PK, Monteiro PJM. Concrete microstructure, properties and materials. 2017.
36.      Akram T, Memon SA, Iqbal K. Utilization of bagasse ash as partial replacement of cement. In: International Conference on Advances in Cement Based Materials and Applications in Civil Infrastructure ACBM-ACI, Lahore, Pakistan. 2007. p. 235–45.
37.      Bogas JA, de Brito J, Figueiredo JM. Mechanical characterization of concrete produced with recycled lightweight expanded clay aggregate concrete. J Clean Prod. 2015;89:187–95.
38.      Neville AM. Properties of concrete. Vol. 4. Longman London; 1995.
39.      Falihy R. Causes of using sodium bicarbonate in cement slurry for injection in rocks (in Persian). In.
40.      Erfany H. Crystallography (in Persian). Tehran: Tehran University;
41.      318 ACIC. Building Code Requirements for Structural Concrete (ACI 318-14): An ACI Standard: Commentary on Building Code Requirements for Structural Concrete (ACI 318R-14): an ACI Report. American Concrete Institute; 2014.