Shear capacity assessment of reinforced concrete deep beams using artificial neural network

Document Type : Original Article

Authors

1 Department of Civil Engineering Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

2 Civil Eng., Allameh Jafari

3 Civil Eng., Vali-e-Asr University of Rafsanjan

Abstract

مراجع
]1[ کیا، س. م، (1393). شبکه­های عصبی در MATLAB ویرایش سوم، تهران، دانشگاهی کیان.
]2[ طرح و اجرای ساختمان­های بتن ارمه، دفتر مقررات ملی ساختمان، وزارت راه و شهرسازی. مبحث نهم.
[3] Elcordy MF, Chang KC and Lee GC. (1993). Neural networks trained by analytically simulated damage states. J Comput Civil Eng, 7(2):130-45.
[4] Sand A and Saka M. (2001). Prediction of ultimate shear strength of reinforced-concrete deep beams using neural networs. J Struct Eng, 127(7):818-828.
[5] Inel M. (2007). Modeling ultimate deformation capacity of RC columns using artificial neural networks. Eng Struct, 29(3):329-35.
[6] Tang S, Kong FK snd Poh SP. (1998). Shear strength of reinforcement and prestressed concrete deep beams. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 128(2):112-123.
[7] Naderpour H and Alavi SA. (2017). A proposed model to estimate shear contribution of FRP in strengthened RC beams in terms of Adaptive Neuro-Fuzzy Inference System. Composite Structures, 170:.215-227.
[8] Hosseini G. (2017). Capacity Prediction of RC Beams Strengthened with FRP by Artificial Neural Networks Based on Genetic Algorithm. Soft Computing in Civil Engineering, 1(1):93-98.
[9] Farahnaki R. (2017). The application of particle swarm optimization and artificial neural networks to estimating the strength of reinforced concrete flexural members. Soft Computing in Civil Engineering, 1(2):1-7.
]10[ نادرپور حسین و فخاریان پویان. (1396). پیش‏ بینی مقاومت پیچشی تیرهای بتن ‏آرمه تقویت شده با FRP با استفاده از شبکه‏ های عصبی مصنوعی. مهندسی سازه و ساخت، شناسه دیجیتال 10.22065/JSCE.2017.70668.1023.
[11] Kong FK. (2002). Reinforced concrete Deep Beams. Taylor & Francis e – Library, Van Nostrand Reinhold New York.
[12] Smith KN and Vantsiotis AS. (1982). Shear strength of deep beams. ACI struct J, 79(3): 201-213.
[13] Kong FK, Robins PJ and Cole DF. (1970). Web reinforcement effects on deep beams. ACI struct J, 67(12):1010-1018.
[14] ACI , Committee 318. (2015). Building Code Requirements for Structural Concrete ( ACI 218 – 05 ) and Commentary ( ACI 318 – 05 ), USA.
[15] ACI – 318 , ACIC, (2008). 318 – 08 : Building Code Requirements for Structural Concrete and Commentary . American Concrete Institute.
[16] Mau ST and Hsu TSTC. (1989). Formula for the shear strength of deep beams. ACI Struct J, 86(5):516-523.
[17] Tang CY and Tan KH. (2004). Interactive mechanical model for shear strength of deep beams. J struct Eng, 130(10):1634-1544.
[18] CIRIA-Guide 2, C.I.R.a.I.A. (1977). CIRIA Guide 2: The Design of Deep Beams in Reinforcement Concrete.
[19] Hagan MT and Menhaj M. (1999). Training feed-forward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5:989-93.

Keywords


]1[ مهتا؛ مونته­ئیرو؛ مترجمین (رمضانیان­پور و همکاران)؛ "ریزساختار، خواص و اجزای بتن (تکنولوژی پیشرفته بتن)" انتشارات دانشگاه صنعتی امیرکبیر؛ صفحه 87 تا 93.
]2[ میندس، س؛ یانگ، ف؛ داروین، د؛ مترجمین (شکرچی­زاده و همکاران)؛ "بتن" انتشارات دانشگاه تهران؛ صفحه 156 تا 160.
[3] Sengul, Ö. Tasdemir, C. and Tasdemir, MA.; “Influence of aggregate type on mechanical behaviour of normal and high-strength concretes”; ACI Materials Journal 99, No. 6 (2002) 528-533.
[4]Goble, CF. and Cohen, MD.; “Influence of aggregate surface area on mechanicalproperties of mortar”; ACI Materials Journal 96, No. 6 (1999) 657-662.
[5] Zhou, FP. Lydon, FD. and Barr, BIG.; “Effect of coarse aggregate on elastic modulus andcompressive strength of high-performance concrete”; Cement and Concrete Research 25, No. 1 (1995) 177-186.
[6] Jae-Il, S. Keun-Hyeok, Y. and Joong-Kyu, J.; “Influence of aggregate size on the compressive size effect according to different concrete types”; Construction and Building Materials 44 (2013) 716-725.
[7] Jae-Il, S. Keun-Hyeok, Y. Kim, HY. and Choi, BJ.; “Size and shape effects on compressive strength of lightweight concrete”; Construction and Building Materials 33 (2013) 854-864.
[8] ASTM C642.; “Standard Test Method for Density, Absorption, and Voids in Hardened Concrete”; ASTM International; West Conshohocken (2006).
[9] BS EN-480-5.; “Tests methods, determination of capillary absorption”; British Standards Institution (1997).
[10] BS 1881-208.; “Testing concrete, Part 208. Recommendations for the determination of the initial surface absorption of concrete”; British Standards Institution (1997).
[11] ASTM C 1202.; “Standard Test Method for Electrical indication of concrete’s ability to resist chloride Ion penetration”; ASTM International; West Conshohocken (2006).
[12] AASHTO TP 64.; “Predicting chloride penetration of hydraulic cement concrete by the rapid migration procedure”; AASHTO (2007).
[13] Feldman, R.F. Chan, G.W. Brousseau, R.J.m. and Tumidajski, P.J.; “Investigation of rapid chloride permeability tests”; ACI Materials Journal 91, No. 2 (1994) 246-255.
]14[ باقری، ع؛ زنگانه، حامد؛ «مقایسه عملکرد روش RCMT برای ارزیابی سریع مقاومت بتن در برابر نفوذ یون کلر با     روش­های RCPT و مقاومت الکتریکی»؛ مجله عمران مدرس، سال 12، شمارة 3، پائیز 1391، صفحه 103 تا 112.
[15] Zhang, F. Li, N. Guo, M. and Chi, X.; “Coarse Aggregate Effects on Compressive Strength and Permeability Coefficient of Non-fine Concrete”; The Electronic Journal of Geotechnical Engineering 19, (2014) 8905-8912.
[16] Basheer, L. Basheer, P.A.M. Long, A.E.; “Influence of coarse aggregate on the permeation, durability and the microstructure characteristics of ordinary Portland cement concrete”, Construction and building materials 19, No. 9 (2005) 682-690.