Investigation on the Effects of Increasing in Wetting/Drying Cycles on Chloride Ingress into Unsaturated Concrete: A Simulation of Splash Condition

Document Type : Original Article

Authors

1 Faculty member Concrete Technology Department; Road, Housing & Urban Development Research Center (BHRC)

2 MSc in Civil Engineering, Structural Engineering from Islamic Azad University (Qazvin Branch)

3 Faculty member of Road, Housing and Urban Development Research Center (BHRC)

4 Faculty Member of Road, Housing and Urban Development Research Center (BHRC)

Abstract

The chloride ingress into concrete and corrosion of steel reinforcement due to wetting/drying (WD) cycles is a main issue caused to decline the service life of reinforced concrete structures. In this paper, the effects of WD cycles on chloride penetration in concrete were studied using a finite element based numerical model. The results showed that the chloride ingress into concrete increased with increasing in daily WD cycles. The chloride concentration after 10 years at depth of 50 mm and the maximum chloride concentration of the submerged specimen were 2.4 and 2.0 times lower than the specimen exposed to 2 and 24 WD cycles, respectively. These ratios increased up to 4.2 and 3.7 when the WD cycle increased to 24 cycles. The numerical model outputs also indicated that the chloride concentration at depth of 50 mm and the maximum chloride closely tended up to a constant amount by increasing the number of WD cycle up to 100 cycles (similar to splash condition).

Keywords


 
1. Gjørv, O. E., Vennesland, Ø., “Diffusion of chloride ions from seawater into concrete”, Cement and Concrete Research, Vol. 9, No. 2, pp.229-238, (1979).
2. Costa, A., Appleton, J., “Chloride penetration into concrete in marine environment – Part I: Main parameters affecting chloride penetration”, Materials and Structures, Vol. 32, No. 4, pp. 252-259, (1999).
3. Oh, B. H., Jang, S. Y., Shin, Y. S., “Experimental investigation of the threshold chloride concentration for corrosion initiation in reinforced concrete structures”, Magazine of Concrete Research, Vol. 55, No. 2,  pp.117–124, (2003).
4. Dehwah, H. A. F., Maslehuddin, M., Austin S. A., “Long-term effect of sulfate ions and associated cation type on chloride-induced reinforcement corrosion in Portland cement concretes”, Cement and Concrete Composites, Vol. 24, No. 1, pp. 17–25, (2002).
5. Oh, B. H., Jang, S. Y., “Effects of material and environmental parameters on chloride penetration profiles in concrete structures”, Cement and Concrete Research, Vol. 37, No. 1,  pp. 47-53, (2007).
6. Olajumoke, A. M., Oke, I. A.,  Fajobi, A. B., Ogedengbe, M. O., “Engineering failure analysis of a failed building in Osun State, Nigeria”,  Journal of Failure Analysis and Prevention, Vol. 9, No. 1,  pp. 8-15, (2009).
7.] Kropp, J., Hilsdorf, H. K., “Performance criteria for concrete durability”, RILEM Report 12. Cornwall: T.J Press, (1995).
8. Akindahunsi, A., Falade, F. A., Afolayan, J. O., Oke, I. A., “Characterization and Mathematical Modeling of Chloride Diffusion in Lagos Coastal Waters”, Journal of Failure Analysis and Prevention, Vol. 10, No. 3, pp. 169-177, (2010).
9.نعمتی چاری، مهدی، محمد شکرچی زاده و مهدی چینی،  “بررسی اثر ضریب انتقال رطوبت در بتن بر پایایی سازه‌های بتنی در معرض یون کلراید”، ششمین کنفرانس ملی بتن، تهران، مهر 1393.
10. Nemati Chari, M., Shekarchi, M., Tadayon, M.H., Moradian, M., “Prediction of chloride ingress into blended cement concrete: Evaluation of a combined short-term laboratory-numerical procedure”, Construction and Building Materials, Vol. 162, pp. 649-669, (2018)
11. چینی، مهدی،”بررسی تأثیر نسبت آب به مواد سیمانی و درصد دوده سیلیس بر آهنگ نفوذ یون کلر در بتن در محیط خلیج فارس“، پایان‌نامه کارشناسی ارشد، دانشگاه تهران، 1383.
12. محمودی، امین و همکاران، “بررسی دوام بتن مسلح در محیط دریایی خورنده شدید بر حسب موقعیت قرار گیری بتن نسبت به تراز آب دریا”، نشریه مهندسی دریا، سال پنجم، شماره 10، پاییز و زمستان 88.
13. Prakash, J., “Predicted service life of chloride transport equation using finite difference scheme”, International journal of mathematical science and applications, Vol. 1, No. 2, pp. 451-462, (2011).
14. Nielsen, E. P., Geiker, M. R., “Chloride diffusion in partially saturated cementitious material”, Cement and Concrete Research, Vol. 33, No. 1, pp. 33-138, (2003).
15. Martys N, Ferraris CF, “Capillary transport in mortar and concrete”, Cement and Concrete Research, Vol. 27, No. 5, pp. 747-760, (1997).
16. Martin-Perez B,“Service life modelling of R.C. highway structures exposed to chlorides”, PhD thesis, university of Toronto, (1999).
17. Bazant ZP, Najjar LJ, “Nonlinear water diffusion in nonsaturated concrete”, Materials and Structures, Vol. 5, No. 25, pp. 3-20, (1972).
18. Akita H, Fujiwara T, Ozaka Y, “A Practical Procedure for the Analysis of Moisture Transfer within Concrete Due to Drying”, Magazine of Concrete Research, Vol. 49, No. 179, pp. 129-137, (1997).
19. Nemati Chari M, Shekarchi M, Ghods P, Moradian M, “A simple practical method for determination of moisture transfer coefficient of mature concrete using a combined experimental-numerical approach”, Concrete and Computers, Vol. 18, No. 3, pp. 367-388, (2016).
20. McCarter WJ, “Influence of surface finish on sorptivity on concrete”, Journal of Materials in Civil Engineering, Vol. 5, pp. 130-136, (1933).
21. Brunauer S, Emmett PH, Teller E, “Adsorption of Gases in Multimolecular Layers”, Journal of American Chemical Society, Vol. 60, pp. 309-319, (1938).
22. Yuan Q, Shi C, De Schutter G, Audenaert K, Deng D, “Chloride binding of cement-based materials subjected to external chloride environment - A review”,  Construction and Building Materials, Vol. 23, pp. 1-13, (2009).
23. Sergi W, Yu SW, Page CL, “Diffusion of chloride and hydroxyl ions in cementitious materials exposed to a saline environment”, Magazine of Concrete Research, Vol. 44, No. 158, pp. 63-69, (1992).
24. Saetta AV, Scotta R, Vitaliani RV, “Analysis of chloride diffusion in partially saturated concrete”. ACI Materials Journal, Vol. 90, No. 5, pp. 441-451, (1993).
25. Alexander MG, Magee BJ, “Durability performance of concrete containing condensed silica fume”, Cement and Concrete Research, Vol. 29, pp. 917-922, (1999).
26. Bamforth P, Gjorv O, Sakai K, Bantia N, “Spreadsheet model for reinforcement corrosion in structures exposed to chloride”, Concrete Under Severe Condition 2: Environment and Loading, Vol. 1, pp. 64-75, (2000).
27. Song HW, Shim HB, Petcherdchoo A, Park SK, “Service life prediction of repaired concrete structures under chloride environment using finite difference method”, Cement and Concrete Composites, Vol. 31, pp. 120-127, (2009).
28. Xi YP, Bažant ZP, “Modeling chloride penetration in saturated concrete”, Journal of Materials in Civil Engineering, Vol. 11, No. 1, pp. 58-65, (1999).