Shock-Aftershock Effect Analysis for Seismic Performance Evaluation of RC moment Frames

Document Type : Original Article

Authors

1 Faculty of Civil Engineering, Urmia University of Technology, Urmia, Iran

2 Civil Engineering Faculty, Urmia University of Technology, Urmia, Iran

Abstract

Sequential quakes as shock-aftershocks result in nonlinear response of buildings and in many cases lead to severe destruction such as accumulative structural damages in compare to single shock quakes. In current study, the shock-aftershock sequence effect on the nonlinear seismic performance of reinforced concrete (RC) moment frames is studied in detail. In this way, nonlinear numerical method is selected as the study approach and preliminary models are calibrated based on existing shake-table experiments. In advance, four-story and eight-story frames are modeled using flexibility-based finite element code and are subjected to quake sequences. Three types of seismic sequences are assumed for study: (1) single shock quakes; (2) similar shock-aftershock quakes; (3) dissimilar far field-near fault shock-aftershock quakes. Discussions are based on the maximum and residual inter-story drift ratios. Results reveal that the residual drifts are increased in seismic sequences. In addition, four-story frames experience higher maximum drift ratio than the eight-story frames during the aftershocks. The increase of residual drift ratio in more apparent for four-story frames than eight-story frames in the case of dissimilar seismic sequences. For all the assumed cases, top stories experience the highest values of maximum and residual drift ratios which show the sensitivity of top stories to the seismic sequence. Thus, the collapse probability of top stories is high during shock-aftershock sequences and needs to be considered in further seismic design.

Keywords


 
[1]      کامران‌زاد، ف. موسوی، ل. مجرب، م. معماریان، ح. (1393).  بررسی ‌رفتار ‌کاهندگی ‌پس‌لرزه‌های‌ زمین‌لرزه‌های ‌متوسط ‌تا‌ بزرگ‌ در‌ فلات‌ ایران. زمین ساخت(95): 143-154
  [2]      Faisal, A., Majid, T. A., & Hatzigeorgiou, G. D. (2013). Investigation of story ductility demands of inelastic concrete frames subjected to repeated earthquakes. Soil Dynamics and Earthquake Engineering, 44, 42-53.
  [3]      Ruiz-García, J., Marín, M. V., & Terán-Gilmore, A. (2014). Effect of seismic sequences in reinforced concrete frame buildings located in soft-soil sites. Soil Dynamics and Earthquake Engineering, 63, 56-68.
  [4]      Ruiz-García J., "Issues on the response of existing buildings under mainshock–aftershock seismic sequences", in 15th World conference on earthquake engineering (2012), Lisbon, Portugal
[5]      حسینی، س ا. معصومی، ع. (1395). اثر زلزله و پس‌لرزه‌های متوالی بر پاسخ غیرارتجاعی قاب بتن مسلح. نشریه زمین‌شناسی مهندسی، ویژه‌نامه دومین همایش لرزه‌خیزی البرز
[6]      پورعلی، ج. (1395). اثر پس لرزه بر قاب های خمشی فولادی در انواع خاک. موسسه آموزش عالی غیرانتفاعی طبری
  [7]      Hosseini S.A., Massumi A., "Evaluation of Essential Structures Performance Under Mainshock-AfterShocks Sequence-Type Ground Motions in 7th International Conference of Seismology and Earthquake Engineering (SEE7) (2015) Iran
  [8]      IBC(2000), "International Building Code,2000", International Code Council, U.S.A. (2000)
[9]      استاندارد طراحی ساختمان‎ها در برابر زلزله (استاندارد 2800)، ویرایش چهارم، مرکز تحقیقات ساختمان و مسکن، وزارت مسکن و شهرسازی (1393)
[10]      پناهی، ع. (1392). توالی لرزه ای و اثرات خاص آن بر سازه ها. اولین کنفرانس ملی مهندسی ژئوتکنیک ایران، دانشکده فنی و مهندسی دانشگاه محقق اردبیلی، اردبیل، ایران
[11]      Oyguc, R., Toros, C., & Abdelnaby, A. E. (2018). Seismic behavior of irregular reinforced-concrete structures under multiple earthquake excitations. Soil Dynamics and Earthquake Engineering, 104, 15-32.
[12]      George D. Hatzigeorgiou, Dimitri E. Beskos. 2009. Inelastic displacement ratios for SDOF structures subjected to repeated earthquakes. Computers and Structures. 31,2744–2755
[13]      Hosseinpour, F., & Abdelnaby, A. E. (2017). Fragility curves for RC frames under multiple earthquakes. Soil Dynamics and Earthquake Engineering, 98, 222-234.
[14]      Ruiz-García, J., & Negrete-Manriquez, J. C. (2011). Evaluation of drift demands in existing steel frames under as-recorded far-field and near-fault mainshock–aftershock seismic sequences. Engineering Structures, 33(2), 621-634.
[15]      Huang, W., Qian, J., & Fu, Q. (2012). Damage assessment of RC frame structures under mainshockaftershock seismic sequences. In Proc. of the 15th World Conference on Earthquake Engineering (15WCEE), Portugal, Lisbon.
[16]      Hatzivassiliou, M., & Hatzigeorgiou, G. D. (2015). Seismic sequence effects on three-dimensional reinforced concrete buildings. Soil Dynamics and Earthquake Engineering, 72, 77-88.
[17]      Hosseinpour, F., & Abdelnaby, A. E. (2017). Effect of different aspects of multiple earthquakes on the nonlinear behavior of RC structures. Soil Dynamics and Earthquake Engineering, 92, 706-725.
[18]      Ruiz-García, J., & Aguilar, J. D. (2017). Influence of modeling assumptions and aftershock hazard level in the seismic response of post-mainshock steel framed buildings. Engineering Structures, 140, 437-446.
[19]      Li, S., Zuo, Z., Zhai, C., Xu, S., & Xie, L. (2016). Shaking table test on the collapse process of a three-story reinforced concrete frame structure. Engineering Structures, 118, 156-166.
[20]      GB50010, C. S. (2010). Code for design of concrete structures. GB50010-2010, China Building Industry Press, Beijing.
[21]      Mander, J. B., Priestley, M. J., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of structural engineering, 114(8), 1804-1826.
[22]      Martínez-Rueda, J. E., & Elnashai, A. S. (1997). Confined concrete model under cyclic load. Materials and Structures, 30(3), 139-147.
[23]      Menegotto, M. (1973). Pinto,(1973), PE, Method of Analysis for Cyclically Loaded Reinforced Concrete Plane Frames Including Changes in Geometry and Non-elastic Behavior of Elements Under Combined Normal Force and Bending. In IABSE Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well-Defined Repeated Loads, Lisbon.
[24]       Haselton, C. B. (2009). Pacific Earthquake Engineering Research Center. University of California, Berkeley.
[25]      ACI, A. (2014). 318-14. Building Code Requirements for Structural Concrete, American Concrete Institute, Farmington Hills, Michigan.