Experimental Comparison of Shear Behavior of Plain and Fiber Reinforced Concrete Beams with Continuous Rectangular Spiral Reinforcement

Document Type : Original Article

Authors

1 Phd, Faculty of Civil Engineering, Semnan University, Semnan, Iran

2 Distingushed Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran

3 Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran

Abstract

In general, shear reinforcement in reinforced concrete beams typically involves the use of stirrups. However, substituting stirrups with continuous rectangular spiral reinforcement can enhance construction efficiency and lower costs. Meanwhile, the adoption of fiber-reinforced concrete in concrete structures is on the rise due to its distinctive properties. To address the tensile and shear vulnerabilities of concrete, reinforcing it with fibers is a viable solution. This study explores the experimental replacement of stirrups with continuous rectangular spiral reinforcements in both traditional concrete and steel fiber-reinforced concrete (SFRC) beams. Three beams were subjected to static loading tests: the first beam, referred to as ST-NC, featured stirrups and normal concrete as a reference; the other two beams incorporated continuous rectangular spiral reinforcements with normal concrete (SP-NC) and steel fiber-reinforced concrete at a 0.75% volume fraction (SP-F0.75). The experimental findings indicate that the beam reinforced with continuous rectangular spiral reinforcements and fiber concrete exhibits improved shear resistance, energy absorption, and ductility compared to the normal concrete beam and the reference beam. The beams with continuous rectangular spiral reinforcements, using normal concrete and steel fiber-reinforced concrete, demonstrated a 23.8 and 46.5% increase in shear capacity, respectively, compared to the reference beam. Additionally, energy absorption in SP-NC and SP-F0.75 beams increased by 69 and 158%, respectively, compared to the reference beam. The ductility of the continuous rectangular spiral reinforcement beam with normal concrete and steel fiber-reinforced concrete is 0.87 and 1.17 times that of the reference beam, respectively. Notably, the results reveal a reduction in the ductility of the SP-NC beam compared to the reference beam, and the addition of 0.75% by volume of fibers to the concrete resolves this ductility weakness in the SP-NC beam. These findings underscore the advantages of employing continuous rectangular spiral reinforcements in beams constructed with steel fiber-reinforced concrete, as proposed in this study

Keywords

Main Subjects


[1] ACI Committee 318. Building code requirements for structural concrete (ACI 318M-19) and Commentary on Building Code Requirements for Structural Concrete (ACI 318RM-19), American Concrete Institute (ACI); (2019).
[2] Nilson, N., Winter, G., (1986), Design of Concrete Structures, McGraw-Hill, New York.
[3] Park, R., Paulay, T., (1975), Reinforced Concrete Structures, John Wiley & Sons.
[4]  Sidney, M., Young, J.F. and Darwin, D., (2003), Concrete, Prentice Hall.
]5[ خیرالدین، علی، دهقان، مرتضی، شربتدار، محمدکاظم، (1397)، بهبود سازه‌ای تیر رابط دیوارهای برشی همبند با جایگزینی بتن الیافی توانمند (HPFRCC) با بتن معمولی، مجله علمی پژوهشی دانشگاه صنعتی امیرکبیر، 3: 471-484
[6] Fascia F., Chiara D.M., Piasanti, G., Iovino, R., (2010), Continuous stirrup with vertical arms and variable pitch for reinforced concrete structures. Schnell S.p.A.
[7] Riva, P., (2009), Cyclic response of column-to-foundation joints with continuous stirrups SPIREX. Schnell technical report.
[8] Sung Eom, T., Min Kang. S., Gun Park. H., Woo Choi. T., Min Jin. J., (2014), Cyclic loading test for reinforced concrete columns with continuous rectangular and polygonal hoops. Journal of Engineering Structures, Elsevier; 67: 39–49.
[9] Kakaletsis J, Karayannis G, Panagopoulos K., (2013), Effectiveness of rectangular spiral shear reinforcement on infilled R/C frames under cyclic loading. Journal of Earthquake Engineering, Taylor & Francis; 15: 1178–1193.
[10] Karayannis CG, Chalioris CE, Mavroeidis PD., (2005), Shear capacity of RC rectangular beams with continuous spiral transversal reinforcement. WIT Trans Modell Simul; 4: 379–86.
[11] Karayannis, C., Chalioris, C., (2013), Shear tests of reinforced concrete beams with continuous rectangular spiral reinforcement, Constr. Build. Mater. 46: 86–97.
[12] Chalioris, C., Karayannis, C., (2013), Experimental investigation of RC beams with rectangular spiral reinforcement in torsion, Eng. Struct. 56: 286–297.
[13] Corte, W., Boel, V., (2013), Effectiveness of spirally shaped stirrups in reinforced concrete beams, Eng. Struct. 5: 667–675.
[14] Shatarat, N., Katkhuda, H., Abdel-Jaber, M., Alqam, M., (2016), Experimental investigation of reinforced concrete beams with spiral reinforcement in shear, Constr. Build. Mater. 125: 585–594.
[15] Shatarat, N., Mahmoud, H.M.,  Katkhuda, H., (2018), Shear capacity investigation of self compacting concrete beams with rectangular spiral reinforcement, Constr. Build. Mater. 189: 640–648.
[16] Saha, P., Meesaraganda, L.V.P., (2019), Experimental investigation of reinforced SCC beam-column joint with rectangular spiral reinforcement under cyclic loading, Constr. Build. Mater. 201: 171–185.
 [17] Cuenca, E., (2015), On Shear Behavior of Structural Elements Made of Steel Fiber Reinforced Concrete, Springer.
[18] Lin,Wei-ling, (1992), Toughness Behavior Of  fiber  Reinforcement Concrete, Proceeding of the Fourth RILEM International Symposium Sheffield, UK.
]19[ علی عسگری، محمد، شربتدار، محمدکاظم، (1396)، بررسی آزمایشگاهی ظرفیت خمشی و فشاری پانل های بتن مسلّح به الیاف شیشه، فصلنامه علمی پژوهشی تحقیقات بتن، 2: 15-31.
]20[ شربتدار، محمدکاظم، قاسمی نقیب دهی، ماهان، دهقان، مرتضی، (1390)، بررسی رفتار صفحات بتن آرمه دولایه تحت بارگذاری ضربه ای، ششمین کنـگره ملی مهنـدسی عمـران، دانشگاه سمنان، سمنان، ایران.
 [21] Hemmati, A., Kheyroddin, A. and Sharbatdar, M.K., (2015), Increasing the flexural capacity of RC beams using partially HPFRCC layers, Computers and Concrete, 4: 545-568.
 [22] ACI544.1R-96, State of The Art Report on The Fiber Reinforced Concrete.
[23] American Concrete Institute (ACI) 544.1R-96, (1998), State of The Art Report on The Fiber Reinforced Concrete". Manual of concrete practice, ACI-544. 2R-89 Michigan, USA.

[24] Ghasemi Naghibdehi, M., Sharbatdar, M.K., Dehghan, M., (2012), Experimental Investigation of Flexural Behavior of One-Way Two-Layer Steel and Polypropylene Fiber Reinforced Concrete Slab, 9th International Congress on Civil Engineering, Isfahan University of Technology, Isfahan, Iran.

[25] Tahenni, T., Chemrouk, M. and Lecompte, T., (2016), Effect of steel bers on the shear behavior of high strength concrete beams", Construction and Building Materials, 105: 14-28.
[26] Greenough, T. and Nehdi, M.L., (2008), Shear behavior of _berreinforced self-consolidating concrete slender beams, ACI Materials Journal, 105(5): 468-477.
]27[ کریمی مهرآبادی، محمد، هاشمی، حمید، (1396)، بررسی رفتار تیرهای بتنی حاوی الیاف فولادی فاقد خاموت،  مجله علمی پژوهشی عمران شریف، 2/3 : 85-94.
]28[ حمزه نژادی، ابوذر، شربتدار، محمدکاظم، خیرالدین، علی، (1398)، بررسی آزمایشگاهی رفتار برشی تیرهای عمیق با جایگزینی بتن مسلح کامپوزیتی الیافی بجای بتن معمولی، فصلنامه علمی پژوهشی تحقیقات بتن، 3: 29-43.

[29] Bichitra, S. N., Kranti, J., (2022), Shear resistant mechanisms in steel fiber reinforced concrete beams: An analytical investigation, Structures, 39: 607-619.

[30] Shin, H.-O. , Min, K.-H. , Mitchell, D., (2018), Uniaxial behavior of circular ultra-high-performance fiber-reinforced concrete columns confined by spiral reinforcement, Construction and Building Materials, 168: 379-393.

[31] Tamjeed, A, Chidambaram, R.S., (2022), Shear strength of steel fiber reinforced concrete beam– A review, Materials Today: Proceedings, 64: 1087-1093.