رفتار تیر بتن مسلح مقاوم سازی شده با مصالح HPFRCC

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشگاه آزاد اسلامی، واحد سمنان، سمنان، ایران

2 گروه مهندسی عمران، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران

چکیده

مواد مرکب سیمانی مسلح الیافی توانمند (HPFRCC) مصالحی هستند که به سبب وجود الیاف و ساز و کار پل زدن آنها، دارای رفتار سخت‌شوندگی کرنشی کششی بوده و قابلیت تشکیل ترک‌های چندگانه را دارند. این مصالح توانمند، فاقد مصالح سنگی درشت دانه بوده و الیاف به شکل تصادفی داخل آن توزیع می‌شود. در این مقاله بر مبنای یک کار آزمایشگاهی، از لایه‌های HPFRCC با ضخامت، طول و مقاومت‌های فشاری و کششی مختلف برای مقاوم سازی یک تیر بتن آرمه استفاده گردیده و با استفاده از روش اجزای محدود، تاثیر این متغیرها بر ظرفیت خمشی این تیر، بررسی شده است. نتایج نشان می‌دهد که افزایش مقاومت فشاری و کششی لایه‌ی تقویتی HPFRCC تاثیر چندانی بر ظرفیت تیر ندارد. همچنین افزایش ضخامت و طول لایه‌های HPFRCC، بار نهایی و شکل‌پذیری نمونه‌ها را افزایش می‌دهد. شکل‌پذیری نمونه‌ای که به طور کامل از مصالح  HPFRCC تشکیل شده است، نسبت به نمونه مرجع بتن مسلح، حدود 39 % افزایش می‌یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Behavior of reinforced concrete beam strengthened by HPFRCC material

نویسندگان [English]

  • Ali Hemmati 1
  • Samira Ezzoddin 2
1 Civil Engineering Department, Islamic Azad University, Semnan Branch, Semnan, Iran
2 Department of Civil Engineering, Semnan Branch, Islamic Azad University, Semnan, Iran
چکیده [English]

 
High performance fiber reinforced cementitious composites (HPFRCC) are cement matrices with strain hardening behavior under tension loading. In these composites, the cement mortar with only fine aggregates is reinforced by random distributed fibers. In this material, multiple cracking in the HPFRCC occurs due to bridging mechanism of the fibers and subsequently, the strain hardening behavior is observed. In this paper, based on an experimental work, HPFRCC layers with different thicknesses and different lengths are used in lieu of normal concrete. Compressive and tensile strengths of the HPFRCC material are variable in these analytical models too. Finite element approach is used to investigate the effect of these parameters on the capacity of the reinforced concrete beam. Results show that increasing the compressive and tensile strength of the HPFRCC layers concludes to more final load and more ductility of the analytical beams. But this increasing effect is not significant. Moreover, increasing the thickness and length of the HPFRCC material concludes to more final load and more ductility in the retrofitted models. The ductility of the full HPFRCC beam is about 1.39 times more than that of the reinforced concrete beam.
 

کلیدواژه‌ها [English]

  • Retrofitting
  • Reinforced concrete beam
  • HPFRCC
  • Ductility
  • Ultimate load
 
[1] Naaman, A.E., and Reinhardt, H.W., (2003), High performance fiber reinforced cement composites, HPFRCC- 4, France.
[2] Li, V.C., (2007), Engineered cementitious composites (ECC)-material, structural, and durability performance, University of Michigan, Ann Arbor, MI 48109.
[3] JSCE, (2008), Recommendations for design and construction of high performance fiber reinforced cement composites.
[4] Qian, S., and Li, V.C., (2007), Simplified inverse method for determining the tensile strain capacity of strain hardening cementitious composites, Journal of Advanced Concrete Technology, 5(2): 235-246.
[5] Martinola, G., Meda, A., Plizzari, G.A., Rinaldi, Z. (2007), An application of high performance fiber reinforced cementitious composites for RC beam strengthening.
[6] Kim, J.J., Lim, Y.M., Won, J.P., Park, H.G., Lee, M.S. (2007), Shear capacity and failure behavior of DFRCC repaired RC beams at tensile region, FRPRCS-8, Greece.
[7] Yang, H.J., Kim, J.S., Kim, S.H., Yun, H.D. (2012). Flexural performance of reinforced concrete beams with a layer of expansive strain-hardening cement based composite (SHCC), 15WCEE, Portugal.
[8] Ferrari, V., Hanai, J., Souza, R. (2013), Flexural strengthening of reinforced concrete beams using high performance fiber reinforcement cement-based composite (HPFRCC) and carbon fiber reinforced polymers (CFRP), Construction and Building Materials, 48: 485-498.
[9] Muhaxheri, M. (2014), Behavior of coupling beams retrofitted with advanced cementitious composites: experiments and modeling, PhD Thesis, MilanUniversity.
[10] Chao, C.G., Kim, Y.Y., Feo, L., Hui, D. (2014), Cyclic responses of reinforced concrete composite columns strengthened in the plastic hinge region by HPFRC mortar, Composite Structures, 94: 2246-2253.
]11[خرم، نگین، شربتدار، محمدکاظم، (1393)، بررسی تقویت خمشی دال­های ضعیف بتن آرمه با لایه­های متفاوت کامپوزیت‌های الیافی توانمند"، تحقیقات بتن، سال هفتم، 2: 91-81.
[12] Esmaeeli, E. (2015), Development of hybrid composite plate (HCP) for strengthening and repair of RC structures, PhD Dissertation, University of Minho..
[13] Hemmati, A., Kheyroddin, A., Sharbatdar, M.K., Park, Y., Abolmaali, A., (2016), Ductile behavior of high performancefiber reinforced cementitious composite (HPFRCC) frames, Construction and Building Materials, 115: 681-689.
[14] Khalil, A.H., Etman, E., Atta, A., Essam, M., (2017), Nonlinear behavior of RC beams strengthened with strain hardening cementitious composites subjected to monotonic and cyclic loads, Alexandria Engineering Journal, 55 :1483-1496.
]15[ افروزنیا، محمد، (1396)، بررسی آزمایشگاهی مقاوم سازی دال­های ضعیف بتن آرمه یک طرفه با استفاده از ورقه‌های بتن توانمند الیافی پیش ساخته"، پایان نامه کارشناسی ارشد، دانشگاه سمنان.
[16] Krishnaraja, A.R., Kandasamy, S. (2017), Flexural performance of engineered cementitious composite layered reinforced concrete beams, Archives of Civil Engineering, LXIII(4): 173-189.
[17] Jayananda, N. (2017), Flexural behavior of reinforced concrete beams with a layer of SHCC in the tension zone, MSc Thesis, Delft University of Technology.
[18] Zhang, Y., Ueda, N., Nakamura, H., Kunieda, M. (2018), Behavior investigation of reinforced concrete members with flexural strengthening using strain hardening cementitious composites, ACI Structural Journal, 114(2): 417-426.
[19] Kobayashi, K., Rokugo, K. (2013), Mechanical performance of corroded RC member repaired by HPFRCC patching, Construction and Building Materials, 39: 139-147.
[20] Help of ABAQUS, (2008), Getting started with ABAQUS.
[21] Gencturk B., and Elnashai A.S. (2012), Numerical modeling and analysis of ECC structures, materials and structures, 46(4): 663-682.
[22] Hemmati, A., Kheyroddin, A., and Sharbatdar, M.K., (2015), Plastic hinge rotation capacity of reinforced HPFRCC beams, Journal of Structural Engineering (ASCE), 141 (2).
[23] Hemmati, A., Kheyroddin, A., and Sharbatdar, M.K., (2014), Proposed equations for estimating the flexural characteristics of reinforced HPFRCC beams, Iranian Journal of Science and Technology IJST, Transactions of Civil Engineering, 38 (C2): 395-407.