نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد سازه، دانشکده مهندسی عمران، دانشگاه صنعتی شریف، تهران، ایران

2 استاد، دانشکده مهندسی عمران، دانشگاه صنعتی شریف

10.30478/jcsm.2019.161581.1106

چکیده

بتن ماده ای است که به دلیل کارایی و مقاومت فشاری زیاد کاربرد گسترده ای در مهندسی عمران دارد. مقاومت کم بتن در برابر تنش های کششی، به ویژه در محصوریت پایین ضرورت استفاده از سیستم های مرکب فولاد و بتن را فراهم می کند. در ستون های فولادی پر شده با بتن(CFST)، محصوریت بتن توسط فولاد تامین شده و کمانش موضعی فولاد به وسیله ی هسته ی بتنی بهبود می یابد. در این پژوهش ابتدا با استفاده از روش اجزای محدود نرم افزار آباکوس نتایج عددی ستون CFST با نتایج آزمایشگاهی موجود مقایسه شده و از درستی مدل سازی، اطمینان حاصل شده است. سپس اثر تغییر ضخامت جداره ی مقطع فولادی و مقاومت فشاری بتن بر رفتار ستون های CFST مورد بررسی قرار گرفت. برای در نظر گرفتن اثر تغییر این پارامترها از 9 مدل ستون CFST با سه ضخامت متفاوت جداره ی مقطع فولادی و سه مقاومت فشاری مختلف بتن استفاده شد. رفتار غیرخطی فولاد با استفاده از مدل سخت شوندگی مرکب که شامل سخت شوندگی ایزوتروپیک و سینماتیک می باشد مورد استفاده قرار گرفت. روابط و نمودارهای تنش-کرنش و پارامترهای خرابی فشاری و کششی بتن به طورکامل شرح داده شده است. تاثیر افزایش ضخامت فولاد و مقاومت بتن بر جذب انرژی سازه، سختی اولیه و ظرفیت ستون مورد بررسی قرار گرفت. با توجه به نتایج تحلیل، تاثیر افزایش ضخامت جداره ی مقطع فولادی در عملکرد ستون های CFST نسبت به افزایش مقاومت بتن قابل توجه می باشد. بررسی ظرفیت جذب انرژی و تغییر مقاومت نهایی ستون های CFST نشان می دهد که اثر تغییر مقاومت فشاری بتن برای مدل های با فولاد محصورکننده ی با ضخامت کمتر قابل توجه می باشد. در مقاطع فولادی با ضخامت زیاد جداره، تغییرمقاومت فشاری بتن تاثیر زیادی در جذب انرژی نداشته و مقاومت ستون را به مقدار کمی افزایش می دهد. در نتیجه برای بهبود عملکرد سازه های دارای ستون های CFST از لحاظ جذب انرژی، سختی و ظرفیت مطلوب است از مقاطع فولادی با ضخامت مناسب جداره و بتن با مقاومت معمولی استفاده شود.

کلیدواژه‌ها

عنوان مقاله [English]

Numerical analysis of CFST columns subjected to lateral cyclic loading and influence of concrete compression strength and steel plate thickness

نویسندگان [English]

  • Nahid Khodabakhshi 1
  • Alireza Khaloo 2

1 MSc Student of Structural, Civil Engineering, Sharif University of Technology, Tehran, Iran

2 Distinguished Professer, Department of Civil Engineering, Sharif University of Technology, Tehran, Iran

چکیده [English]

Concrete is widely used in civil engineering because of its high compressive strength and efficiency. Low resistance of concrete against tensile stresses, especially in low confinement systems necessitates the use of steel-concrete composite systems. In concrete-filled steel tubes, the confinement of concrete is supplied by steel and the local buckling of steel is improved by concrete core. In this paper, using the Abaqus software finite element method, the numerical results of the CFST column are compared with the experimental results and have been assured of the correctness of the modeling. Then, the effect of changing the thickness of the steel and the compressive strength of the concrete on the behavior of CFST columns is investigated. To consider the effect of changing these parameters, 9 CFST column models with three different steel thicknesses and three different compressive strengths of concrete have been used. Nonlinear behavior of steel using a mixed hardening model incorporating both isotropic and kinematic hardening was used in modeling. Concrete’s stress-strain relations and compression-tensile damage parameters are fully described. The effect of increasing thickness of steel and concrete strength on structural energy absorption, initial stiffness and column capacity were investigated. According to the results of the analysis, the effect of increasing the thickness of steel on the performance of CFST columns relative to the increase in concrete strength is significant. Investigating the energy absorption capacity and the resistance of the CFST columns shows that the effect of changing the compressive strength of concrete for confinement steel with less thickness is significant. In confinement steel with high thickness, the change in concrete compressive strength does not have a significant effect on energy absorption and increases the column's strength slightly. As a result, to improve the performance of structures with CFST columns, in terms of energy absorption, stiffness and capacity, it is desirable to use suitable thickness for steel and normal strength for concrete.

کلیدواژه‌ها [English]

  • concrete-filled steel tube CFST
  • finite element analysis
  • composite columns
  • mixed hardening
  • damage parameters

 

[1] P.Prasanna Kumari, Dr. B.R. Niranjan, “Concrete Filled Steel Tubular Columns”, International journal for research in emerging science and technology, Volume-3, Issue-5, pp. 80-83, 2016.

 

[2] Lin-Hai Han, WeiLi, Reidar Bjorhovde, “Developments and advanced applications of concrete-filled steel tubular(CFST) structures: Members”, Journal of Constructional Steel Research, Volume-100, pp. 211–228, 2014.

 

 

[3] Oshea and Bridge, “Local buckling of thin-Walled circular steel sections with or without internal restraint”, Journal of Constructional Steel Research, Volume-41, Issues 2-3, pp. 137-157, 1997.

 

[4] Lin  and  Tsai, “Mechanical  behaviour  of  doubleskinned composite steel  tubular  columns”, National Centre  for  Research  on  Earthquake Engineering,  Taipei, Taiwan, 2000.

 

[5] Huang  CS, “Axial  Load  Behavior  of  Stiffened Concrete-Filled  Steel Columns”,  Journal  of  Structural Engineering, Volume-128, Issue-9, pp.1222-1230, 2002.

 

[6] Darshika  K.Shah, M.D.Vakil, and M.N.Patel, “Parametric  study of  Concrete  filled  steel  tube  column”, Volume-2, Issue-2, pp. 1678-1682, 2014.

 

[7] علی علی نژاد و علیرضا خالو، "مروری بر عملکرد ستون­های بتنی محصورشده با لوله­های کامپوزیتی تحت بارمحوری فشاری"، پنجمین کنفرانس ملی بتن خودتراکم ایران و اولین کنفرانس ملی تعمیر و نگهداری سازه­های بتنی، تهران، دانشگاه علم و صنعت ایران،۱۳۹۶.

[8]  Hajjar JF, Tort C, “Mixed finite-element modeling of rectangular concrete-filled steel tube members and frames under static and dynamic loads”. Journal of Structural Engineering ASCE, Volume-136, Issue-6, pp.654–64, 2010.

 

[9] Denavit MD, Hajjar JF, “Nonlinear seismic analysis of circular concrete-filled steel tube members and frames”, Journal of Structural Engineering ASCE, Volume-138, Issue-9, pp.1089–98, 2012.

 

[10] You-Fu Yang, Chao Hou, and Min Liu, “Experimental Study and Numerical Analysis of CFSST Columns Subjected to Lateral Cyclic Loading”, Journal of Structural Engineering, Volume-144, Issue-12, 2018.

 

[11] Dutta, A., S. Dhar, and S. K. Acharyya. “Material characterization of SS 316 in low-cycle fatigue loading”, Journal of Materials Science, Volume-45, Issue-7, pp.1782–1789, 2010.

 

[12] Nip, K. H., L. Gardner, C. M. Davies, and A. Y. Elghazouli, “Extremely low cycle fatigue tests on structural carbon steel and stainless steel”, Journal of Construction Steel Research, Volume-66, Issue-1, pp.96–110, 2010.

 

[13] Goto, Y., G. P. Kumar, and N. Kawanishi. “Nonlinear finite-element analysis for hysteretic behavior of thin-walled circular steel columns with in-filled concrete”, Journal of Structural Engineering, Volume-136, Issue-11, pp.1413–1422, 2010.

 

[14] Birtel, V., and P. Mark., “Parameterised finite element modelling of RC beam shear failure”, In Proc. 19th Annual Int., ABAQUS Users’ Conf., pp.95–108, 2006.