اعتبارسنجی الگوی شکست نمونه آزمایش شده با دستگاه مبدل بار فشاری به کششی توسط نرم افزار FRANC2D و روش ناپیوستگی جابجایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مشاور مدیر عامل شرکت راهسازی و عمران ایران ،تهران، ایران

2 دانشکده مهندسی معدن، دانشگاه صنعتی همدان، همدان، ایران

3 مدیر عامل شرکت راهسازی و عمران ایران، تهران، ایران

4 کارشناس ارشد فنی،شرکت راهسازی و عمران ایران، تهران، ایران

چکیده

در این مقاله، دستگاه مبدل بار فشاری به کششی (CTT) معرفی می شود که با استفاده از آن می توان شکست کششی در نمونه ایجاد نمود. دستگاه تبدیل بار فشاری به بار کششی از 6 قسمت مختلف ساخته شده است. جزء شماره 1 و 2، ∪ شکل و ∏ شکل می باشند که از فولاد ضد زنگ ساخته شده اند. جزء شماره 3 و 4، دو فولاد ضد زنگ نیمه استوانه ای با ابعاد mm 60×mm75×mm10 هستند. جزء شماره 5 و 6، دو تیغه فولادی با ابعاد mm 20× mm 10× mm 190 می باشند. نمونه های بتنی مورد استفاده در این تست دارای مقطع مستطیلی و حفره مرکزی است. نمونه مورد آزمایش، دارای ابعاد mm190× mm60 ×mm 150 و حفره مرکزی دارای قطر mm 75 و ارتفاع mm 60 می باشد. نسبت قطر حفره به عرض نمونه برابر 5/0 است. این هندسه با استفاده از مجموعه ای از شبیه سازی ها توسط نرم افزار FRANC2D ، انتخاب شده است. نمونه های بتنی از ترکیب آب، ماسه ریز دانه و سیمان با نسبتهای %40، %30 و %30 آماده شده اند. دستگاه و نمونه بتنی در ماشین تک محوره قرار می گیرد. با تبدیل بار فشاری به بار کششی توسط دستگاه CTT، آزمایش کشش انجام شد. الگوی شکست رخ داده در نمونه آزمایشگاهی گویای شکست کششی است. به منظور اعتبارسنجی الگوی شکست نمونه آزمایشگاهی، آزمایش کشش توسط نرم افزار FRANC2D و روش ناپیوستگی جابجایی مرتبه بالاتر شبیه سازی شد. تطابق الگوی شکست نمونه آزمایشگاهی، مدل عددی FRANC2D و مدل عددی ناپیوستگی جابجایی مرتبه بالاتر بیانگر اعتبار دستگاه معرفی شده در ایجاد شکست کششی در نمونه می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Validation of Failure Pattern in Sample Tested in Compression to Tensile Load Convertor Device Using FRANC2D and Displacement Discontinuity methods

نویسندگان [English]

  • Hadi Haeri 1
  • Vahab Sarfarazi 2
  • jalal bahrami 3
  • amir khosravi 4
1 Rahsazi & Omran Iran construction Company, Tehran, Iran
2 Department of Mining Engineering, Hamedan University of Technology, Hamedan,Iran
3 Rahsazi & Omran Iran construction Company, Tehran, Iran,
4 Rahsazi & Omran Iran construction Company, Tehran, Iran
چکیده [English]

In this paper, a compressive to tensile load convertor (CTC) device has been introduced which can be used for induction of tensile failure in specimen. This devise was consisted of 7 different parts. Parts number 1 and 2 which have U shape and П shape section have been made from stainless steel. Parts number 3 and 4 were made from two semi-cylindrical stainless steels with dimension of 10mm × 75mm × 60mm. Parts number 5 and 6 were made from two stainless steels with dimension of 190mm × 10mm × 20 mm. The concrete specimens used in this test have rectangle shape with internal pore. This geometry was gained from FRANC2D simulation outputs. The concrete samples has been prepared by mixing water, fine sand and cement by the ratio of 40%, 30% and 30%. The CTC device and sample were inserted in uniaxial test machine. The tensile test was performed by conversion of compression load to tensile load using CTC test. The tensile failure pattern occurred in the sample. For validation of experimental results, numerical simulations have been done using FRANC2D and high order displacement discontinuity method. The good accordance between failure pattern in numerical simulations and experimental test shows the validation of introduced device in induction of tensile failure in specimens.

کلیدواژه‌ها [English]

  • compressive to tensile converter device
  • tensile strength
  • Concrete
  • FRANC2D
  • displacement discontinuity method
 
[1]     Wan Ibrahim, MH., Hamzah, AF., Jamaluddin, N., Ramadhansyah, PJ., Fadzil, AM.; 2015; “Split Tensile Strength on Self-compacting Concrete Containing Coal Bottom Ash”; Procedia - Social and Behavioral Sciences, Vol. 198, pp. 2280-2289.
[2]     Tiang, Y., Shi, S., Jia, K., Hu, S.; 2015; “Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion”; Construction and Building Materials, Vol. 93, pp. 1151-1156.
[3]     Luong, M.; 1990; “ Tensile and shear strengths of concrete and rocktensile and shear strength of concrete and rock”; Engineering fracture mechanic, Vol. 35(1-3), pp. 127-135.
[4]     Joseph, O.; 2012; “Flexural and Tensile Strength Properties of Concrete Using Lateritic sand and quarry Dust as Fine Aggregate”; ARPN Journal of Engineering and Applied Sciences, Vol. 7(3), pp. 324-331.
[5]     Silva, RV., Brito, J., Dhir, RK.; 2015; “tensile strength behaviour of recycled aggregate concrete, Construction and Building Materials”; Vol. 83, pp. 108-118.
[6]     Gerges, N., Issa, C., Fawaz, S.; 2015; “Effect of construction joints on the splitting tensile strength of concrete”; Case Studies in Construction Materials, Vol. 3, pp. 83-91.
[7]     Liu, X., Nie, Z., Wu, S., Wang, C.; 2015; “Self-monitoring application of conductive asphalt concrete under indirect tensile deformation”; Case Studies in Construction Materials,Vol. 3, pp. 70-77.
[8]     Mobasher, B., Bakhshi, M., Barsby, C.; 2014; “Backcalculation of residual tensile strength of regular and high performance fiber reinforced concrete from flexural tests”; Construction and Building Materials, Vol. 70, pp. 243-253.
[9]     Kim, J., Taha, M R.; 2014; “Experimental and Numerical Evaluation of Direct Tension Test for Cylindrical Concrete Specimens”; Advances in civil engineering, Vol. 2014, pp. 1-8.
[10] Rocco, R., Guinea, GV., Palans, J.; 2001; “Elices M, Review of the splitting-test standads from a fracture mechanics point of view”; cement and concrete research, Vol. 31(1), pp. 73-82.
[11] Gomez, J T., Shukla, A., Sharma, A.; 2001; “Static and dynamic behavior of concrete and
granite in tension with damage”; Theor Appl Fract Mech, Vol. 36, pp. 37-49.
[12] Mier, J G M., Vliet, M R A.; 2002; “Uniaxial tension test for the determination of fracture parameters of concrete”; Eng Fract Mech, Vol. 69, pp. 235-247.
[13] Yerlici, A.; 1965; “Behavior of plain concrete under axial tension”; ACI Journal, August, p. 987.
[14] Castro-Montero, A., Jia, Z., Shah, SP.; 1995; “Evaluation of damage in brazilian test using holographic interferometry”; In: ACI Materials Journal 92, No. 3: 268-275.
[15] Hannant, D.J., Buckley, K.J., Croft, J.; 1973; “The effect of aggregate size on the use of the cylinder splitting test as a measure of tensile strength”; In: Materials and Structures 6, No. 31: 15-21.
[16] Tedesco, J.W., Ross, C.A., Kuennen, S.T.; 1973; “Experimental and numerical analysis of high strain rate splitting tensile tests:. In: ACI Materials Journal 90, No. 2: 162- 169.
[17] Pandit, G.S.; 1970; “Discussion on the paper, concrete rings for determining tensile strength of concrete”; ACI Journal, October, 847-848.
[18] Chen, W. F.; 1970; “Double Punch Test for Tensile Strength of Concrete”; Journal of the American Concrete Institute; Vol 1(67), pp. 993-995.
[19] Elayesh S. M.; 2009; “Performance of laterite aggregate concrete”. Un published M. Eng. Thesis. University Teknologi, Malaysia.
[20] BS 1881-118; 1983; “Method for determining flexural strength, British Standards Institution”; London.
 [21] Haeri, H., Shahriar, K., Fatehi Marji, M., Moarefvand, P.; 2013; “using of DDM for investigation of crack propagation in rock-like material”; journal of analytical and numerical methods in mining engineering, Vol. 5, pp. 38-49. (in persian)
[22] Marji, MF.; 2013; “On the Use of Power Series Solution Method in the Crack Analysis of Brittle Materials by Indirect Boundary Element Method”; Engin Fract Mech, Vol. 98, pp. 365–382.
[23] Sarfarazi, V., Ghazvinian, A., Schubert, W., Nejati, H., Hadei, R.; 2016; “A New Approach for Measurement of Tensile Strength of Concrete” Periodica Polytechnica Civil Engineering; Online First (2016) paper 8328.
 
[24]ASTM C496-96.; “Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens”; Annual Book of ASTM Standards,Vol. 4. West Conshohocken, PA: ASTM.
[25] Crouch, SL.; 1967a; “Analysis of stresses and displacements around underground excavations: an application of the Displacement Discontinuity Method”; University of Minnesota Geomechanics Report, Minneapolis, Minnesota.
[26] Crouch, SL., 1967b; “Solution of plane elasticity problems by the displacement discontinuity method”; Int. J. Numer. Methods Eng., Vol. 10, pp. 301–343.
[27] Fatehi Marji, M., Hosseini_Nasab, H., Kohsary A.H.; 2006; “On the uses of special crack tip elements in numerical rock fracture mechanics”; Int. jour. of Solids and Structures, Vol. 43, pp. 1669-1692.