مکان‌یابی بهینه محل جاذب‌های انرژی دیوارهای بتنی پایه-گهواره‌ای مرکزگرا به منظور کاهش اثرات مودهای بالاتر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 محقق پسادکتری، مهندسی سازه، دانشگاه علم و صنعت ایران

2 دانشیار، مهندسی سازه، دانشگاه علم و صنعت ایران

چکیده

در این تحقیق به بررسی فاصله قرارگیری جاذب‌های انرژی از میانه دیوار در پایه دیوارهای پایه-گهواره‌ای مرکزگرا پرداخته شده است. برای این‌منظور سازه‌های با تعداد طبقات 4، 8، 12، 16 و 20 طبقه مورد بررسی قرار گرفته شد. رفتار دینامیکی غیرخطی این سازه‌ها تحت 22 رکورد لرزه‌ای دور ازگسل، 14 رکورد لرزه‌ای نزدیک گسل بدون پالس و 14 رکورد نزدیک گسل دارای پالس مورد بررسی قرار گرفت. مدل‌ها به صورت دوبعدی در نرم‌افزار OpenSees مورد بررسی قرار گرفته است. رکوردهای موردنظر در دو سطح DBE و MCE مقیاس شده و به سازه اعمال می‎شوند. نتایج نشان داد که تغییر محل جاذب‌های انرژی می‌تواند در تغییر مقادیر تلاش‌های خمشی و برشی دیوار و نیز پاسخ‌های دریفت پسماند و شتاب بام موثر باشد. با افزایش فاصله جاذب‌های انرژی از میانه دیوار می‌تواند تلاش‌های خمشی و برشی را در سطح DBE به مقدار 14 و 13 درصد و در سطح MCE به مقدار 19 و 17 درصد به‌ترتیب کاهش داد. هم‌چنین مقادیر کاهش لنگر و برش در سازه‌ها تحت رکوردهای نزدیک گسل دارای پالس و در هر دو سطح خطر لرزه‌ای نسبت به سایر رکوردها، بیشتر است. در پایان، با افزایش فاصله جاذب‌های انرژی از میانه دیوار، شتاب‌های بام کاهش یافته می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimal locating of Energy Dissipations Effect in Self-Centering Base-Rocking Concrete Shear walls to Reduce the Higher Modes Effects

نویسندگان [English]

  • Esmaeil Mohammadi Dehcheshmeh 1
  • Vahid Broujerdian 2
1 Postdoctoral Researcher, Structural Engineering, Iran University of Science and Technology, Tehran, Iran.
2 Associate Professor, Structural Engineering, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

In this research, the placement of energy dissipaters at the base of self-centering base-rocking walls has been investigated. For this purpose, structures with 4-, 8-, 12-, 16- and 20-floors were investigated. The nonlinear dynamic behavior of these structures was investigated subjected to 22 Far-Field (FF), 14 Near-Field without Pulse (NF-non Pulselike), and 14 Near-Field with Pulse (NF-Pulselike) seismic ground-motions. The models have been analyzed in two dimensions via OpenSees software. The considered seismic ground-motions are scaled and applied to the structure at DBE and MCE levels. The results showed that changing the location of energy absorbers can be effective in the value of the moment and shear demands of walls as well as the response of residual drift and roof acceleration. By increasing the distance of the energy dissipaters from the middle of the section wall, the moment and shear demands could be reduced about 14% and 13% at the DBE level, and about 19% and 17% at the MCE level, respectively. Furthermore, the reduction values of the moment and shear demands of the structures under NF-Pulselike and DBE or MCE levels have been observed more than other seismic ground-motions. Finally, increasing the distance of the energy absorbers from the middle of the wall, the accelerations of the roof decrease.

کلیدواژه‌ها [English]

  • Self-Centering System
  • Energy Dissipation
  • Base-rocking Wall
  • Higher Mode Effects
  • Residual Drift
Subjected to Far-Field and Near-Field Ground Motions,” J. Struct. Eng., vol. 148, no. 9, p. 4022134, 2022.
[2]         M. J. E. Majumerd, E. M. Dehcheshmeh, V. Broujerdian, and S. Moradi, “Self-centering rocking dual-core braced frames with buckling-restrained fuses,” J. Constr. Steel Res., vol. 194, p. 107322, 2022.
[3]         M. J. Ebrahimi Majumerd and others, “Feasibility study of using endurance time method for seismic evaluation of self-centering buckling restrained braced frame (SC-BRC-BF),” Modares Civ. Eng. J., vol. 22, no. 2, p. 0, 2022.
[4]         M. Rafiei Mohammadi, V. Broujerdian, and E. Mohammadi Dehcheshmeh, “Optimized design of bi-rocking steel braced frames; changing second rocking joint location,” Sharif J. Civ. Eng., 2023, doi: 10.24200/j30.2022.61242.3156.
[5]         E. Mohammadi Dehcheshmeh and V. Broujerdian, “Seismic Design Coefficients of Self-Centering Multiple Rocking Walls Subjected to Effect of Far and Near-Field Earthquakes,” Civ. Infrastruct. Res., vol. 7, no. Issue 1 (In progress), 2021, doi: 10.22091/cer.2021.7025.1257.
[6]         J. Wang and W. Zhou, “Experimental and numerical response of unbonded post-tensioned rocking wall under lateral cyclic loading,” J. Build. Eng., p. 105827, 2023.
[7]         G. W. Housner, “The behavior of inverted pendulum structures during earthquakes,” Bull. Seismol. Soc. Am., vol. 53, no. 2, pp. 403–417, 1963.
[8]         M. Aslam, W. G. Godden, and D. T. Scalise, “Earthquake rocking response of rigid bodies,” J. Struct. Div., vol. 106, no. 2, pp. 377–392, 1980.
[9]         M. J. N. Priestley, “Overview of PRESSS research program,” PCI J., vol. 36, no. 4, pp. 50–57, 1991.
[10]       J. I. Restrepo, J. Mander, and T. J. Holden, “New generation of structural systems for earthquake resistance,” in NZSEE 2001 Conference, 2001.
[11]       F. J. Perez, S. Pessiki, and R. Sause, “Seismic Design of Unbonded Concrete Walls with Vertical Joint Connectors,” PCI J., vol. 49, no. 1, pp. 58–79, 2004, doi: 10.15554/pcij.01012004.58.79.
[12]       R. S. Henry, S. Sritharan, and J. M. Ingham, “Finite element analysis of the PreWEC self-centering concrete wall system,” Eng. Struct., vol. 115, pp. 28–41, 2016, doi: 10.1016/j.engstruct.2016.02.029.
[13]       R. S. Henry, S. Sritharan, and J. M. Ingham, “Residual drift analyses of realistic self-centering concrete wall systems,” Earthq. Struct., vol. 10, no. 2, pp. 409–428, 2016, doi: 10.12989/eas.2016.10.2.409.
[14]       M. Sadeghi, F. Jandaghi Alaee, H. A. Bengar, and A. Jafari, “Hysteresis Behavior of Hybrid Rocking Walls: An Analytical Method,” Pract. Period. Struct. Des. Constr., vol. 28, no. 1, p. 4022064, 2023.
[15]       M. Sadeghi, F. Jandaghi Alaee, H. Akbarzadeh Bengar, and A. Jafari, “Evaluating the efficiency of supplementary rebar system in improving hysteretic damping of self-centering rocking walls,” Bull. Earthq. Eng., vol. 20, no. 11, pp. 6075–6107, 2022.
[16]       N. Abbasi, H. Akbarzadeh Bengar, A. Jafari, and M. Nazari, “Numerical modeling of seismic response and damage estimation of concrete rocking walls under seismic loading,” Sharif J. Civ. Eng., vol. 37, no. 2.2, pp. 35–45, 2021.
[17]       X. Lu, B. Yang, and B. Zhao, “Shake-table testing of a self-centering precast reinforced concrete frame with shear walls,” Earthq. Eng. Eng. Vib., vol. 17, no. 2, pp. 221–233, 2018, doi: 10.1007/s11803-018-0436-y.
[18]       T. Sun, Y. C. Kurama, P. Zhang, and J. Ou, “Linear-elastic lateral load analysis and seismic design of pin-supported wall-frame structures with yielding dampers,” Earthq. Eng. Struct. Dyn., vol. 47, no. 4, pp. 988–1013, 2018, doi: 10.1002/eqe.3002.
[19]       G. Wu, D.-C. Feng, and C.-L. Wang, “Prefabricated Rocking Wall Structural System,” in Novel Precast Concrete Structure Systems, Springer, 2023, pp. 199–228.
[20]       G. Guo, L. Qin, D. Yang, and Y. Liu, “Dimensional response analysis of rocking wall-frame building structures with control devices subjected to near-fault pulse-like ground motions,” Eng. Struct., vol. 220, p. 110842, 2020.
[21]       A. A. Shahmansouri, H. Akbarzadeh Bengar, and A. Jafari, “Modeling the lateral behavior of concrete rocking walls using multi-objective neural network,” J. Concr. Struct. Mater., vol. 5, no. 2, pp. 110–128, 2020.
[22]       V. Broujerdian and E. Mohammadi Dehcheshmeh, “Development of fragility curves for self-centering base-rocking walls subjected to far and near field ground motions,” Sharif J. Civ. Eng., 2021, doi: 10.24200/j30.2021.57279.2897.
[23]       V. Broujerdian and E. Mohammadi Dehcheshmeh, “Investigation of the Behavior of Self-Centering Base- and Double- Rocking Walls Subjected to Far-Field and Near-Field Earthquakes,” Ferdowsi Civ. Eng., 2021, doi: 10.22067/jfcei.2021.68094.1008.
[24]       E. Mohammadi Dehcheshmeh and V. Broujerdian, “Determination of optimal behavior of self-centering multiple-rocking walls subjected to far-field and near-field ground motions,” J. Build. Eng., p. 103509, 2022, doi: https://doi.org/10.1016/j.jobe.2021.103509.
[25]       V. Broujerdian and E. Mohammadi Dehcheshmeh, “Locating the rocking section in self-centering bi-rocking walls to achieve the best seismic performance,” Bull. Earthq. Eng., 2022, doi: 10.1007/s10518-022-01325-y.
[26]       E. Mohammadi Dehcheshmeh and V. Broujerdian, “The effects of rotational components of near-fault earthquakes on self-centering base-rocking walls,” Bull. Earthq. Sci. Eng., 2021.
[27]       E. Mohammadi Dehcheshmeh and V. Broujerdian, “Investigation of the leaning column effect on estimating of the responses of self-centering base-rocking walls under far-and near-field ground motions,” Civ. Infrastruct. Res., 2022.
[28]       L. Wiebe and C. Christopoulos, “Mitigation of higher mode effects in base-rocking systems by using multiple rocking sections,” J. Earthq. Eng., vol. 13, no. 1 SUPPL. 1, pp. 83–108, 2009, doi: 10.1080/13632460902813315.
[29]       M. Khanmohammadi and S. Heydari, “Seismic behavior improvement of reinforced concrete shear wall buildings using multiple rocking systems,” Eng. Struct., vol. 100, pp. 577–589, 2015, doi: 10.1016/j.engstruct.2015.06.043.
[30]       D. Pennucci, G. M. Calvi, and T. J. Sullivan, “Displacement‐based design of precast walls with additional dampers,” J. Earthq. Eng., vol. 13, no. S1, pp. 40–65, 2009.
[31]       J. I. Restrepo and A. Rahman, “Seismic Performance of Self-Centering Structural Walls Incorporating Energy Dissipators,” J. Struct. Eng., vol. 133, no. 11, pp. 1560–1570, 2007, doi: 10.1061/(ASCE)0733-9445(2007)133:11(1560).
[32]       FEMA, FEMA P695 :Quantification of building seismic performance factors. US Department of Homeland Security, FEMA, 2009.
[33]       M. Archila, “Directionality effects of pulse-like near field ground motions on seismic response of tall buildings.” University of British Columbia, 2014.
[34]       ASCE/SEI 7, “Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-10).,” 2010.
[35]       F. C. Blebo and D. A. Roke, “Seismic-resistant self-centering rocking core system with buckling restrained columns,” Eng. Struct., vol. 173, pp. 372–382, 2018.
[36]       A. Farzinpour, E. Mohammadi Dehcheshmeh, V. Broujerdian, S. Nasr Esfahani, and A. H. Gandomi, “Efficient boosting-based algorithms for shear strength prediction of squat RC walls,” Case Stud. Constr. Mater., vol. 18, p. e01928, 2023, doi: https://doi.org/10.1016/j.cscm.2023.e01928.