ارزیابی عملکرد لرزه‌ای ستون‌های بتن مسلح تحت اثر میزان خوردگی آرماتورهای عرضی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی عمران، دانشکده مهندسی عمران و منابع زمین، دانشگاه آزاد اسلامی واحد تهران مرکزی

2 کارشناس ارشد سازه، گروه مهندسی عمران، دانشکده مهندسی عمران و منابع زمین، دانشگاه آزاد اسلامی واحد تهران مرکزی

چکیده

درک رفتار لرزه‌ای ستونهای بتن مسلح محصور توسط خاموت‌های بادرجات مختلف خوردگی از اهمیت بسزایی برخوردار می‌باشد. در این مطالعه سعی می‌گردد تأثیر شاخص‌های عملکرد لرزه‌ای نظیر تنزل مقاومت، میزان استهلاک انرژی، شکل‌پذیری و میرایی هیسترزیس در نمونه‌ها و مدل‌های مختلف به ازای درصدهای مختلف خوردگی خاموت‌ها مورد بررسی و ارزیابی قرار گیرد. با توجه به تحلیل‌های انجام شده نتایج حاصله بیانگر تأثیر غیرمطلوب میزان خوردگی آرماتورهای عرضی بر پیوستگی بین بتن و آرماتور و عملکرد لرزه‌ای ستون می‌باشد. بدلیل تضعیف اثر محصورشدگی هسته بتنی ناشی از شرایط خوردگی شدید آرماتور عرضی، پاسخ‌های لرزه‌ای تنزل یافته و مود خرابی از حالت شکل‌پذیر به شکننده تغییر می‌یابد. با افزایش درصد خوردگی خاموت‌ها، شکل‌پذیری و ظرفیت استهلاک انرژی کاهش می‌یابد، بنحوی‌که کاهش پاسخ ها به درصد خوردگی خاموت‌ها وابسته است. در این مطالعه رابطه کاهندگی برای درصد خوردگی خاموت‌های ستون‌های بتن مسلح تحت مقادیر مختلف مقاومت تسلیم آرماتورهای عرضی، مقاومت مشخصه بتن، پوشش بتن و فاصله خاموت‌ها پیشنهاد گردید. مقادیر پیش‌بینی‌شده حاصل از رابطه کاهندگی پیشنهادی تطابق مناسبی را در قیاس با نتایج تحلیلی نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Corrosion Rate of Stirrups on Seismic Performance of Reinforced Concrete Columns

نویسندگان [English]

  • Abbas Ghasemi 1
  • saba ferasati 2
1 Assistant Professor, Department of Civil Engineering, Faculty of Civil and Earth Resources Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2 MS Graduated, Department of Civil Engineering, Faculty of Civil and Earth Resources Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

It is essential to properly understand the seismic behavior of reinforced concrete (RC) columns confined by stirrups that experience different corrosion rates. The current study investigated the effect of seismic performance indicators such as strength loss, energy dissipation rate, ductility and hysteresis damping on specimens and models for different stirrup corrosion rates. Analysis revealed the adverse effects of corrosion on the bond performance between the concrete and steel bars which affected the seismic performance of the columns. It was observed that severe corrosion of the stirrups undermined confinement of the concrete core and caused the seismic response to degrade. This changed the failure mode from a ductile to a brittle state. As the corrosion rate of the stirrups increased, their ductility and energy dissipation capacity decreased such that the amount of decrease depended on the corrosion rate. An attenuation relationship is proposed for the corrosion rate of the stirrups for different stirrup yield strengths, concrete compressive strengths, concrete covers and stirrup spacing. The values estimated by the proposed relationship were shown to be in acceptable agreement with the analytical results.

کلیدواژه‌ها [English]

  • CORROSION
  • STIRRUP
  • REINFORCED CONCRETE
  • COLUMN
  • SEISMIC PERFORMANCE

[1] Amleh, L. ; Mirza S.  (1999). Corrosion Influence on Bond between Steel and Concrete. Aci Structural Journal.  96(3): 53-67.

[2]  Coronelli, D.;  Gambarova,  P. (2004). Structural Assessment of Corroded Reinforced Concrete Beams: Modeling Guidelines. Journal of Structural Engineering. 130(8): 1214-1224.

[3]  Li, Q.; Niu, D.; Xiao, Q.; Guan, X.; Chen, S.  (2018). Experimental study on seismic behaviors of concrete columns confined by corroded stirrups and lateral strength prediction. Journal of Construction and Building Materials. 162(2018): 704-713.

[4]  Mazzotti, C.; Hasan,  M.; Yazdani, N.  (2016). An Experimental Study for Quantitative Estimation of Rebar Corrosion in Concrete Using Ground Penetrating Radar. Journal of Engineering. 2016(6): 1-8.

[5]  Zhang, X.;  Zhang, Y.;  Liu,  B.;  Liu,  B.;  Wu,  W.; Yang, C. (2021). Corrosion-induced spalling of concrete cover and its effects on shear strength of RC beams. Journal of Engineering Failure Analysis. 127 (11): 105538.

[6] Higgins, C.; Farrow, W.C. (2006). Tests of reinforced concrete beams with corrosion damaged stirrups.  Aci Structural Journal. 103 (1):133–141.

[7]  Hanjari, K. Z.; Lundgrena, K. ; Plosa, M. ; Coronelli, D. (2013). Three-dimensional modelling of structural effects of corroding steel reinforcement in concrete.  Journal of Structure and Infrastructure Engineering. 9 (7):702–718.

[8] Zhou, Y.; Gencturk, B.; Willam, K.; Attar, A. (2016). Carbonation-Induced and Chloride-Induced Corrosion in Reinforced Concrete Structures.  Journal of Materials in Civil Engineering. 27 (9).

[9] Kim, A.; Stewart, G. (2000). Structural reliability of concrete bridges including improved    chloride-induced corrosion models.  Journal of Structural Safety. 22 (2000): 313-333.

[10] Arteaga, E.; Stewart, G. (2015). Damage Risks and Economic Assessment of Climate Adaptation Strategies for Design of New Concrete Structures Subject to Chloride-Induced Corrosion.  Journal of Structural Safety. 52 (2015): 40-53.

[11] Darmawan, M.; Stewart, G. (2007). Spatial time-dependent reliability analysis of corroding pretensioned prestressed concrete bridge girders.  Journal of Structural Safety. 29 (2007):16-31.

[12] Li, Z.; Jin, Z.; Wang, P.; Zhao, T. (2021). Corrosion mechanism of reinforced bars inside concrete and relevant monitoring or detection apparatus.  Journal of Construction and Building Materials. 279 (2021): 122432.

[13]  Pellizzer, G.; Leonel, E. D.; Nogueira, C. G. (2015). Influence of reinforcement's corrosion into hyperstatic reinforced concrete beams: a probabilistic failure scenarios analysis.  Journal of Revista IBRACON de Estruturas e Materiais. 8 (4): 479-490.

[14] Ormellese, M.; Berra, M.; Bolzoni, F.; Pastore, T. (2006). Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures.  Journal of Cement and Concrete Research. 36 (2006): 536 – 547.

[15] Fang, C.; Lundgren, K.; Chen, L.; Zhu, C. (2004). Corrosion influence on bond in reinforced concrete. Journal of Cement and Concrete Research. 34 (2004): 2159 – 2167.

[16] Attarchi, M.; Brenna, A.; Ormellese, M. (2021). FEM simulation of corrosion under macro-cell mechanism.  Journal of Corrosion Science. 179 (2021): 109116.

[17] Rajput, A.S.; Sharma, U.K.; Engineer, K. (2019). Seismic retrofitting of corroded RC columns using advanced composite materials. Journal of Engineering Structures. 181(2019): 35–46.

[18] Yu, R.; Chen, L.; Zhang, D.; Wang, Z. (2020). Life cycle embodied energy analysis of RC structures considering chloride-induced corrosion in seismic regions. Journal of Structures. 258(2020): 39–48.

[19] Jia, J.; Zhao, L.; Wu, S.; Wang, X.; Bai, Y.; Wei, Y. (2020). Experimental investigation on the seismic performance of low-level corroded and retrofitted reinforced concrete bridge columns with CFRP fabric. Journal of Engineering Structures. 209(2020).

[20] Yuan, W.; Guo, A.; Li, H. (2017). Experimental investigation on the cyclic behaviors of corroded coastal bridge piers with transfer of plastic hinge due to non-uniform corrosion. Journal of Soil Dynamic and Earthquake Engineering.1021(2017):12–23.

[21] Yuan, W.; Guo, A.; Yuan, W.; Li, H. (2018). Shaking table tests of coastal bridge piers with different levels of corrosion damage caused by chloride penetration. Journal of Construction and Building Materials. 1731(2018): 60–71.

[22] Yuan, W.; Guo, A.; Yuan, W.; Li, H. (2018). Experimental investigation on cyclic behavior of coastal bridge piers with non-uniform corrosion under biaxial quasi-static loads. Journal of Construction and Building Materials. 1902(2018): 22–34.

[23] Yuan, W.; Guo, A.; Li, H. (2020). Equivalent elastic modulus of reinforcement to consider bond-slip effects of coastal bridge piers with non-uniform corrosion. Journal of Engineering Structures. 210(2020).

[24] Jin, Z.; Zhao, X.; Zhao, T.; Li, J. (2018). Chloride ions transportation behavior and binding capacity of concrete exposed to different marine corrosion zones. Journal of Construction and Building Materials. 177(2018): 170–183.

[25] Zhao, J.; Lin, Y.; Li, X.; Li, Q.M. (2021). Experimental study on the cyclic behavior of reinforced concrete bridge piers with non-uniform corrosion. Journal of Structures. 33(2021): 999-1006.

[26] Abaqus Theory Manual, Simulia, 2014.

[27] Young, N.; Wilfried, B.; Kratzig, K.M. (2003). Numerical simulation of serviceability, damage evolution and failure of reinforced concrete shells. Journal of Computers and Structures. 81: 843-857.

[28] Pagoulatou, M.; Sheehan, T.; Dai, X.H.; Lam, D. (2014). Finite element analysis on the capacity of circular concrete-filled double-skin steel tubular (CFDST) stub columns. Journal of Engineering Structures. 72(2014): 102-112.