ارزیابی نیروهای طراحی لرزه‌ای مخازن هوایی آب در ویرایش‌های مختلف استاندارد 2800 در پهنه‌های مختلف خطر نسبی زلزله و انواع خاک

نوع مقاله : مقاله پژوهشی

نویسنده

دانشیار سازه، دانشکده فنی و مهندسی، دانشگاه لرستان، خرم‌آباد، ایران

چکیده

مخازن ذخیره مایعات به عنوان یکی از اجزای اصلی شریان‌های حیاتی بوده که در حین زلزله و حتی بعد از زلزله هم بایستی بتوانند به سرویس‌دهی خود ادامه دهند و سطح عملکردی قابلیت استفاده بی‌وقفه خود را حفظ نمایند. به همین دلیل ایمنی لرزه‌ای مخازن ذخیره مایعات از اهمیت قابل توجهی برخوردار بوده تا از تامین ذخیره آب مناطق زلزله‌زده و اطفای حریق اطمینان حاصل شود. مخازن مایعات صنعتی نیز ممکن است حاوی مایعات پرارزش و یا اشتغال‌پذیری باشند که نباید در حین زلزله محتویات خود را از دست بدهند. مخازن هوایی اغلب برای اهداف ذخیره آب استفاده می‌شوند و می‌توانند روی شفت‌های بتنی پیش‌تنیده، قاب‌های فلزی یا بتنی پیش‌تنیده یا پایه‌های مصالح بنائی قرار گیرند. اغلب استانداردهای طراحی از این نتیجه‌گیری استفاده کرده و عملکرد طراحی لرزه‌ای بالاتری برای مخازن در مقایسه با ساختمان‌های دیگر قائل شده‌اند. در این پژوهش طیف طرح ویرایش‌های اول تا چهارم استاندارد 2800 برای مخازن هوایی آب در چهار نوع خطر نسبی زلزله و چهار نوع خاک تعریف شده در استاندارد، مورد بررسی و مقایسه قرار گرفته و همجنین با شکل‌پذیرترین ساختمان موجود در استاندارد مربوطه مورد مقایسه قرار گرفته است. در استاندارد 2800 برای مخازن هوایی آب در ویرایش‌های اول تا سوم فقط یک ضریب رفتار ارائه شده ولی در ویرایش چهارم، دو ضریب رفتار لحاظ شده است. با بررسی مخازن و ساختمان‌های شکل-پذیر، نیروی طراحی لرزه‌ای آنها مورد مقایسه قرار گرفت و ضمن بررسی و مقایسه این نتایج، تفاوت ویرایش‌های مختلف استاندارد 2800 مورد بررسی قرار گرفت. نتایج نشان داد که در استاندارد 2800، در ویرایش‌های اول تا سوم استاندارد 2800، برای انواع خاک‌ها و مناطق با خطر نسبی زلزله مختلف، نیروی طراحی لرزه‌ای مخازن هوایی حدود 3 تا 7 برابر ساختمان‌های شکل‌پذیر ویرایش مربوطه است. در صورتیکه در ویرایش چهارم این محدوده افزایش داشته بطوریکه نیروی طراحی لرزه‌ای مخازن هوایی حدود 14/2 تا 33/9 برابر ساختمان‌های شکل‌پذیر است. همچنین در ویرایش چهارم استاندارد 2800، برای مخازن با ضریب رفتار 2 و 3، در خاک نوع IV، برای مناطق با خطر نسبی مختلف، کران بالا (در پریودهای بلند) نداشته و برای مخازن با ضریب رفتار 2 و در خاک نوع II، در سطح خطرپذیری کم و متوسط نیز کران پایین (در پریودهای بلند) دیده نمی‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Seismic Design Forces of Elevated Water Tanks in Different Editions of Standard 2800 in Different Zones of Relative Hazard of Earthquake and Soil Types

نویسنده [English]

  • Fereydoon Omidinasab
Associate Professor, Department of Engineering, Lorestan University, Khorramabad, Iran
چکیده [English]

Liquid storage tanks are one of the main components of vital arteries that should be able to continue their service during and even after the earthquake and maintain their uninterrupted usability. For this reason, seismic safety of liquid storage tanks is of considerable importance to ensure the water supply of earthquake-affected areas and fire extinguishing. Tanks of industrial liquids may also contain valuable liquids or employment that should not lose their contents during an earthquake. Elevated tanks are often used for water storage purposes and can be placed on prestressed concrete shafts, prestressed metal or concrete frames or stage of masonry. Most design standards use this conclusion and have higher seismic design performance for reservoirs compared to other buildings. In this study, the first to fourth editions of standard 2800 for elevated water tanks in four types of relative earthquake risk and four types of soil defined in the standard have been investigated and compared with the most ductile building in the relevant standard. In standard 2800 for aerial water tanks in the first to third editions, only one coefficient of behavior is presented, but in the fourth edition, two coefficients of behavior are considered. By examining the tanks and ductile buildings, their seismic design force was compared and while comparing these results, the differences between different edits of standard 2800 were investigated. The results showed that in standard 2800, in the first to third editions of standard 2800, for different soils and regions with relative earthquake risk, the seismic design force of elevated tanks is about 3 to 7 times more than the ductile buildings of the relevant edition. If in the fourth edition, this range has increased so that the seismic design force of elevated tanks is about 2.14 to 9.33 times more than the ductile buildings. Also, in the fourth edition of standard 2800, for reservoirs with behavior coefficients of 2 and 3, in soil type IV, for regions with different relative risks, there is no high bound (in long periods) and for tanks with behavior coefficient 2 and in soil type II, at low and moderate risk level of earthquake, there is no low bound (in long periods).

کلیدواژه‌ها [English]

  • Elevated Water Tanks
  • Design Spectrum
  • Standard 2800
  • Seismic Design Force
[1] Rai DC., Seismic retrofitting of R/C shaft support of elevated tanks. Earthquake spectra 2002; 18(4):745–60.
[2] A. Astaneh-Asl, “Lessons of the 1990 Manjil-Iran earthquake,” in 10th European Conference on Earthquake Engineering, Vienna, 1994, vol. 28, pp. 6997-7000.
[3] Saffarini HS., Ground motion characteristics of the November 1995 Aqaba earthquake. Eng Struct 2000; 22(4):343–51.
[4] Cohen Y, Livshits A, Nascimbene R. Comparative approach to seismic vulnerability of an elevated steel tank within a reinforced concrete chimney. Periodica Polytechnica Civil Engineering 2017; 61(3):361–80.
[5] Brunesi E, Nascimbene R, Pagani M, Beilic D. Seismic performance of storage steel tanks during the May 2012 Emilia, Italy, earthquakes. J Perform Constr Facil 2015; 29(5):04014137.
[6] Fag`a E, Rassati G, Nascimbene R. Seismic design of elevated steel tanks with concentrically braced supporting frames. Structures Congress 2012; 2012:1473–84.
[7] Shakib H., Omidinasab F., Effect of Earthquake Characteristics on Seismic Performance of RC Elevated Water Tanks Considering Fluid Level within the Vessels, Arabian Journal for Science and Engineering volume 36, pages 227–243 (2011).
[8] Omidinasab F., Shakib H., Seismic Response Evaluation of the RC Elevated Water Tank with Fluid-Structure Interaction and Earthquake Ensemble, KSCE Journal of Civil Engineering (2012) 16(3):366-376.
[9] Shakib H., Omidinasab F., Ahmad M.T., Seismic Demand Evaluation of Elevated Reinforced Concrete Water Tanks, International Journal of Civil Engineerng. Vol. 8, No. 3, September 2010.
[10] Fiore A., Demartino C., Greco R., Rago C., Sulpizio C., Vanzi I., Seismic performance of spherical liquid storage tanks: a case study, International Journal of Advanced Structural Engineering (2018) 10:121–130.
[11] Sakshi M, Earthquake Response Control of RC Water Tower Frame Staging Using Special Protection System Sakshi Manchalwar, Civil Engineering Research Journal, Vol. 4 No. 1, 2018, 1-5.
[12] Bakalis K., Vanmvatsikos D., Grant D. N., Mistry A., Downtime assessment of base-isolated liquid storage tanks, Conference of earthquake risk and engineering towards a resilient word, Greenwich, London 2019.
[13] Mansour A. M., Kassem M. M., Nazri F. M., Seismic vulnerability assessment of elevated water tanks with variable staging pattern incorporating the fluid-structure interaction, Structures 34 (2021) 61–77.
[14] Khosravi SH., Yousefi M. M., Goudarzi M. A., Development of Seismic Fragility Curves of Cylindrical Concrete Tanks Using Nonlinear Analysis, Amirkabir J. Civil Eng., 53(1) (2021) 19-22.
[15] Xiong Zh., Chen Liu Ch., Zhang A,, Zhu H., Jiawen Li J., Seismic fragility evaluation of simply supported aqueduct accounting for water stop’s leakage risk, Water 2021, 13, 1404.
[16] Lakhade S. O., Kumara R., Jaiswal O. R., Damage states of yielding and collapse for elevated water tanks supported on RC frame staging,  Structural Engineering and Mechanics, Vol. 67, No. 6 (2018) 587-601.
[17] Mansour A. M., Nazri F. M., On the Influence of Fluid–Structure Interaction and Seismic Design on Frame-Supported Elevated Water Tanks, Structural Engineering International, 2021, DOI: 10.1080/10168664.2021.1948379.
[18] Mansour A. M., Kassem M. M., Nazri F. M., Estimation of drift limits for diff erent seismic damage states of RC frame staging in elevated water tanks using Park and Ang damage index, Earthq Eng & Eng Vib (2020) 19: 161-177.
[19] Soroushnia S, Tafreshi ST, Omidinasab F, et al., Seismic performance of RC elevated water tanks with frame staging and exhibition damage pattern. Procedia Engineering, 2011; 14: 3076–3087.
[20] S. Soroush Nia, F. Omidinasab, N. Beheshtian, Seismic Performance of Reinforced Concrete Water Tanks with Shaft Staging During the Past Earthquakes, Proceedings of the 3rd International Conference on Seismic Retrofitting, Tabriz, Iran, October 2010.
[21] Kilanei F., Mohebbi B., Mardi Pirsultan M. R., Review and comparison of seismic design criteria of storage tanks based on different regulations, Proceedings of the Second National Conference on Earthquake, 2015, Iran, Qazvin, Imam Khomeini International University.
[22] Khanmohammadi M., Akhavan Hejazi F. S., Hataminia H., A Study of the Basics of Designing Concrete Water Storage Tanks in Regulations ACI350.3-06, NZS 3106-2009, EN 1998-4: 2006 (E) and Journal 123, 8th National Congress of Civil Engineering, Faculty of Civil Engineering, Babol, 2014.
[23] Jaiswal O. R., Rai D. C., Jain S. K., Review of code provisions on design seismic forces for liquid storage tanks, Document No., IITK-GSDMA-EQ01-V1.0, Final Report A - Earthquake Codes, IITK-GSDMA Project on Building Codes, 2008.
[24] Institute of Standards and Industrial Research of Iran, Seimic Design Code for Buildings, Standard 2800, 1th Edition, 1997, (In Persian).
[25] Building and Housing Reaserch Center, Iranian Code of Practice for Seismic Resistant Design of Buildings, Standard 2800, 2th Edition, 1999, (In Persian).
[26] Building and Housing Reaserch Center, Iranian Code of Practice for Seismic Resistant Design of Buildings, Standard 2800, 3th Edition, 2005, (In Persian).
[27] Road, Housing and Urban Development Research Center, Earthquake Design Regulations, Standard 2800, 4th Edition, 2015, (In Persian).