بررسی امکان استفاده از پسماند‌های صنعتی و مصالح بازیافتی به عنوان جایگزین بخشی از مصالح در روسازی‌های بتن غلتکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی عمران، واحد سوادکوه، دانشگاه آزاد اسلامی، سوادکوه، ایران

2 گروه مهندسی عمران، دانشکده فنی مهندسی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران

3 گروه عمران، دانشکده فنی مهندسی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران

چکیده

یکی از مسائل مهم حال حاضر جهان در صنعت ساخت و ساز، مسأله بازیافـت است. امروزه استفاده از انواع مختلف بتن‌ در پروژه‌های عمرانی، امری متداول است. یکی از انواع این بتن‌ها بتن غلتکی می‌باشد، که دارای مزایایی از قبیل اجرای سریع و آسان، هزینه های کمتر اجرا و مقاومت در شرایط آب و هوایی گرم و تحت بارگذاری سنگین است. این بتن در ساخت روسازی‌های راه و انواع سازه‌های حجیم قابل استفاده می‌باشد. در این پژوهش به بررسی تاثیر جایگزینی مصالح خرده آسفالت بازیافتی به عنوان مصالح درشت دانه و سرباره فولاد به عنوان مصالح ریزدانه با درصدهای متفاوت بر مشخصات مکانیکی بتن‌ غلتکی پرداخته شده است. نمونه‌ها پس از طرح اختلاط، به مدت 7 و 28 روز عمل‌آوری شدند. نتایج آزمایش‌ها نشان می‌دهد که با افزایش جایگزینی مصالح خرده آسفالتی و سرباره فولاد در نمونه های بتن غلتکی، مقاومت فشاری به صورت قابل ملاحظه‌ای کاهش یافته است؛ به‌طوری که مقاومت فشاری در نمونه حاوی صد در صد مصالح بازیافتی و سرباره، تقریباً یک سوم مقاومت فشاری نمونه شاهد شده است؛ اما، در مقاومت کششی و خمشی این آهنگ کاهش، کندتر شده است. همچنین، تنها نمونه حاوی 25% مصالح خرده آسفالتی و سرباره، حداقل مقاومت فشاری لازم را مطابق با استانداردهای مربوطه داراست؛ در حالی که مقاومت کششی و خمشی 28 روزه در نمونه‌های حاوی 25%، 50% و 75% مصالح خرده آسفالتی و سرباره، بالاتر از مقادیر مجاز مطابق با استانداردها می‌باشد. نتایج آزمایش چقرمگی نشان داد که با افزایش مصالح خرده آسفالتی و سرباره فولاد، مقدار بار حداکثر کاهش یافت؛ ولی با توجه به افزایش انعطاف پذیری مخلوطهای بتن غلتکی، قابلیت جذب انرژی و به تبع آن چقرمگی افزایش یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the possibility of using industrial waste and recycled materials as a substitute for part of the materials in roller compacted concrete pavements

نویسندگان [English]

  • Mohsen Amouzadeh Omrani 1
  • Ali Hassan nezhad 2
  • Vahid Shahbazi 3
1 Department of Civil Engineering, Islamic Azad University, Savadkooh Branch, Savadkooh, I. R. Iran.
2 Department of Engineering, Islamic Azad University,Ayatoollah amoli Branch, Amol, I. R. Iran.
3 Department of Engineering, Islamic Azad University, Ayatollah Amoli Branch, Amol, I. R. Iran.
چکیده [English]

Recycling is one of the most important issues in the construction industry in the world. Today, it is common to use different types of concrete in construction projects. One of these types of concrete is Roller Compacted Concrete (RCC), which has advantages such as fast and easy construction, lower construction costs and resistance in hot weather conditions and heavy loading. This concrete can be used in the construction of road pavements and all kinds of massive structures. In this study, the effect of replacing reclaimed asphalt pavements (RAP) as coarse aggregates and steel slag as fine aggregates with different percentages has been investigated on the mechanical properties of roller concrete. Samples were cured for 7 and 28 days after mixing design. The results of tests show that with increasing the replacement of RAP and steel slag in RCC samples, the compressive strength is significantly reduced; Compressive strength in the sample containing 100% RAP and steel slag, is approximately one third of the compressive strength of the sample; However, this declining trend has slowed down for the tensile and flexural strengths. Also, only the sample containing 25% of RAP and steel slag has the required minimum compressive strength in accordance with the relevant standards; While 28-day tensile and flexural strength in samples containing 25%, 50% and 75% of RAP and steel slag, is higher than the allowable values in accordance with the relevant standards. The results of toughness test showed that with increasing RAP and steel slag, the maximum load was decreased; However, energy absorption capacity and consequently toughness increased, due to the increase in flexibility of RCC mixtures.

کلیدواژه‌ها [English]

  • Roller compacted concrete
  • Reclaimed asphalt pavement
  • Steel slag
  • Concrete pavement
  1. Courard, L, Michel, F, and Delhez, P, )2010(, Use of concrete road recycled aggregates for roller compacted concrete, Constr. Build. Mater, 24(3): 390-395.
  2. Huang, B, Shu, X. and Burdette, E, )2006(, Mechanical properties of concrete containing recycled asphalt pavements, Mag Concrete Res, 58(5): 313-320.
  3. Hossiney, N, Wang, G, Tia, M. and Bergin, M. )2008(, Evaluation of concrete containing RAP for use in concrete pavement , Pavement Res. Technol, 3(5):251-258
  4. Debbarma, S, Ransinchung RN, G. D. and Singh, S, )2019(, Feasibility of roller compacted concrete pavement containing different fractions of reclaimed asphalt pavement, Constr. Build. Mater, 199: 508-525.
  5. Debbarma, S, Singh, S, and Ransinchung RN, G. D, (2019), Laboratory investigation on the fresh, mechanical, and durability properties of roller compacted concrete pavement containing reclaimed asphalt pavement aggregates, Transport. Res. Record J. Transport. Res. Board, 2673(10): 652-662.
  6. Mostofi Nejad, D, Nazari Monfared, H, (2006), Addition of slag and limestone powder to concrete to increase the durability of concrete in sulfate environment, Journal of Transportation Research, 3(2): 139-145 (In presian).
  7. Mohammadpour, R, Javadi, S, (2022), effect of iron concentrate on permeability and compressive strength of concrete, Journal of Concrete Structures and Materials, 6(1): 162-179 (In presian).
  8. Lam, M. N. T, Jaritngam, S, and Le, D. H,) 2017(, Roller-compacted concrete pavement made of electric arc furnace slag aggregate: Mix design and mechanical properties, Constr. Build. Mater, 154: 482-495.
  9. Rooholamini, H, Sedghi, R, Ghobadipour, B, and Adresi, M, )2019(, Effect of electric arc furnace steel slag on the mechanical and fracture properties of roller-compacted concrete, Constr. Build. Mater, 211: 88-98.
  10. Fakhrian, S, Mashhadi, S, Behbahani H, (2020), Compressive strength of fibrous concrete containing crumb rubber under fire, Journal of Concrete Structures and Materials, 5(1): 47-59 (In presian).
  11. Manso, J. M, Polanco, J.A, Losañez, M.J, González, J, (2006), Durability of concrete made with EAF slag as aggregate, Cem. Concr. Compos, 28 (6) 528–534.
  12. Faleschini, xF, Alejandro Fernandez-Ruiz, M, Zanini, M.A, Brunelli, K, Pellegrino, C, Hernandez-Montes, E, High, (2015(, performance concrete with electric arc furnace slag as aggregate: Mechanical and durability properties, Constr. Build. Mater, 101: 113–121.
  13. Palankar, N, Ravi Shankar, A.U, Mithun, B.M, (2016), Durability studies on eco-friendly concrete mixes incorporating steel slag as coarse aggregates, J. Clean. Prod, 129 :437–448.
  14. Adeboje, A. O., Kupolati, W. K., Sadiku, E. R., Ndambuki, J. M., & Kambole, C, (2020), Experimental investigation of modified bentonite clay-crumb rubber concrete. Construction and Building Materials, 233: 117.
  15. Ji, Tao, Chen, Cai-Yi, Chen, Yuan-Yuan, Zhuang, Yi-Zhou, Chen, Jian-Feng, Lin, Xu-jian, (2013), Effect of moisture state of recycled fine aggregate on the cracking resistibility of concrete, Construction and Building Materials 44: 726–733.
  16. Ismail, Sallehan, Ramli, Mahyuddin, (2013), Engineering properties of treated recycled concrete aggregate (RCA) for structural applications, Construction and Building Materials, 44: 464–476.
  17. Karimi, M, Hassani, A, Sodagari J, Arab Ameri, H, (2011), Laboratory Investigation about utilization of recycled asphalt pavements as a substitute for aggregates in roller compacted concrete pavements, Journal of Transportation Engineering, 3(1):69-79 (In presian).
  18. Ameli A.R, Parvaresh Karan E, Hashemi S. A. H, (2018), The effect of using waste materials on mechanical performance of RCC, Journal of Transportation Research, 15(55):271-276 (In presian).
  19. ASTM C3, (2009), Standard test for fireproof partition construction, ASTM international, West Conshohocken, PA.
  20. ASTM C127, (2016), Standard test method for relative density (specific gravity) and absorption of coarse aggregate, ASTM international, West Conshohocken, PA.
  21. ASTM C128, (2016), Standard test method for relative density (specific gravity) and absorption of fine aggregate, ASTM international, West Conshohocken, PA.
  22. Modarres, A, Hosseini, Z, )2014(, Mechanical properties of roller compacted concrete containing rice husk ash with original and recycled asphalt pavement material, Mater. Design, 64: 227-236.
  23. Rahmani, M.K. Sharbatdar, M.H.A. Beygi, (2020), The effect of water-to-cement ratio on the fracture behaviors and ductility of Roller Compacted Concrete Pavement (RCCP), Theor. Appl. Fract. Mech, 109:102753.
  24. Fakhri, M, Amoosoltani, E, )2017(, The effect of reclaimed asphalt pavement and crumb rubber on mechanical properties of roller compacted concrete pavement, Build. Mater, 137: 470-484.
  25. Hesami, S, Modarres, A, Soltaninejad, M, and Madani, H, (2016), Mechanical properties of roller compacted concrete pavement containing coal waste and limestone powder as partial replacements of cement, Build. Mater, 111: 625-636.
  26. Berry, J. R. (2001), Report on roller-compacted concrete pavements, Farmington Hills, MI: ACI committee report.
  27. Lopez-Uceda, A, Agrela, F, Cabrera, M, Ayuso, J, and López, M, (2018), Mechanical performance of roller compacted concrete with recycled concrete aggregates, Road Mater. Pavement Design, 19(1): 36-55.
  • تاریخ دریافت: 25 فروردین 1401
  • تاریخ بازنگری: 16 خرداد 1401
  • تاریخ پذیرش: 14 تیر 1401
  • تاریخ اولین انتشار: 14 تیر 1401