پاسخ لرزه‌ای تک شمع‌های بتنی توربین‌های بادی مستقر بر خاک‌های روانگرا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه خوارزمی، تهران، ایران

2 دانشجوی دکتری، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه خوارزمی، تهران، ایران

چکیده

رشد اخیر در ساخت نیروگاه‌‌های بادی با شمع بتنی در مناطق لرزه‌خیز با احتمال روانگرایی، ارزیابی عملکرد لرزه‌ای این سازه‌ها را ضروری کرده است. در این مقاله تأثیر پدیده روانگرایی بر پاسخ لرزه‌ای توربین‌های بادی تک شمع بتنی بررسی شده است. از روش اجزا محدود و روش مدل‌سازی همبسته تیر بروی بستر غیرخطی وینکلر به منظور شبیه سازی عددی استفاده شده است. با تحلیل‌های تاریخچه زمانی غیر خطی، پاسخ تک شمع بتنی مسلح برای دو دسته رکوردهای زلزله حوزه دور و نزدیک مورد بررسی قرار گرفت. اثر پارامترهای مختلفی نظیر تغییر مشخصات و ضخامت لایه خاک روانگرا و اثر زلزله‌های حوزه دور و نزدیک بررسی شده است. چهار گروه مختلف برای خاک ماسه ای روانگرا در نظر گرفته شد که دارای ضرایب اصطکاک داخلی، سرعت موج برشی، درصد تراکم و تخلل متفاوت هستند. نتایج این تحقیق نشان می‌دهد که با افزایش ضریب اصطکاک داخلی و درصد تراکم خاک میزان فشار آب منفذی اضافی خاک مجاور شمع و میزان جابجایی شمع کاهش می‌یابد. همچنین با افزایش ضخامت لایه روانگرا، فشار آب منفذی اضافی اطراف شمع کاهش اما جابجایی شمع افزایش خواهد یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Seismic Sesponse of Wind Turbines Supported by RC Mono-Pile in Liquefied Soil

نویسندگان [English]

  • Gholamreza Nouri 1
  • Mehran Tirandazian 2
1 Assistant Professor, Faculty of Engineering, Kharazmi University, Tehran, Iran
2 Ph.D. Candidate, Faculty of Engineering, Kharazmi University, Tehran, Iran
چکیده [English]

Recent growth in the construction of wind farms with concrete piles in seismic areas with liquefaction potential has necessitated the evaluation of the seismic performance of these structures. In this paper, the effect of liquefaction on the seismic response of wind turbines supported by reinforced concrete mono-pile is investigated. Nonlinear dynamic analysis has been performed by finite element method in OpenSees software. Beams on a nonlinear Winkler foundation method was applied. The responses of reinforced concrete mono-pile foundation was studied for two sets of far and near field earthquake record and four different groups were considered for liquefied sandy soils with different coefficients of internal friction, shear wave velocity, relative compaction percentage and porosity. The results showed that with increasing the coefficient of internal friction and soil compaction rate, the amount of excess pore pressure of the soil adjacent to the RC mono-pile decreases. Also, as the thickness of the liquefied layer increases, the pressure of the extra pore water around the mono-pile will decrease but the displacement of the mono-pile will increase

کلیدواژه‌ها [English]

  • Wind Turbine
  • Mono-pile
  • Excess pore pressures
  • Far Field Earthquake
  • Near Field Earthquake
[1]         Sewell, D. (2012). Wave loads on multi-member offshore wind turbine sub-structures (Doctoral dissertation, University of Delaware).‏.
[2]         Guideline for Assessment of Soil Liquefaction Potential, Consequences and Mitigation Methods .No. 525. (2012) Office of Deputy for Strategic Supervision Department of Technical Affairs. (In persian)
 [3]        Lombardi D, Bhattacharya S, Hyodo M, Kaneko T.(2014). Undrained behaviour of two silica sands and practical implications for modelling SSI in lique fi able soils. Soil Dyn Earthq Eng;66:293–304. https://doi.org/10.1016/j.soildyn.2014.07.010.
[4]         Lombardi DÃ, Dash SR, Bhattacharya S, Ibraim E, Wood DM, Taylor CA.( 2017). Construction of simplified design p – y curves for liquefied soils;1:216–27.
[5]         Rouholamin, M., Bhattacharya, S., & Orense, R. P. (2017). Effect of initial relative density on the post-liquefaction behaviour of sand. Soil Dynamics and Earthquake Engineering, 97, 25-36. ‏
[6]         Dash, S., Rouholamin, M., Lombardi, D., & Bhattacharya, S. (2017). A practical method for construction of py curves for liquefiable soils. Soil Dynamics and Earthquake Engineering, 97, 478-481.‏
[7]         Zhang X ling, Li X yu, Xu C shun. (2020).Study on the corrected hyperbolic model of liquefaction evaluation for fine-grained sand. Soil Dyn Earthq Eng;139. https://doi.org/10.1016/j.soildyn.106424.
[8]         Özener PT, Greenfield MW, Sideras SS, Kramer SL.( 2019). Identification of time of liquefaction triggering. Soil Dyn Earthq Eng 2020;128. https://doi.org/10.1016/j.soildyn..105895.
[9]         Byrne PM, Puebla H, Chan DH, Soroush A, Morgenstern NR, Cathro DC, (2000).CANLEX full-scale experiment and modelling;562:543–62.
[10]       Chang, B. J., & Hutchinson, T. C. (2013). Experimental evaluation of p-y curves considering development of liquefaction. Journal of geotechnical and geoenvironmental engineering139(4), 577-586.‏
[11]       Lin Z, Pokrajac D, Guo Y, Liao C, Tang T. (2020). Near-trapping effect of wave-cylinders interaction on pore water pressure and liquefaction around a cylinder array. Ocean Eng;218:108047. https://doi.org/10.1016/j.oceaneng.2020.108047.
[12]       Asaadi, A., Sharifipour, M., & Ghorbani, K. (2017). Numerical simulation of piles subjected to lateral spreading and comparison with shaking table results. Civil engineering infrastructures journal, 50(2), 277-292.‏
[13]       Bhattacharya S, Adhikari S.( 2011). Experimental validation of soil – structure interaction of offshore wind turbines. Soil Dyn Earthq Eng;31:805–16. https://doi.org/10.1016/j.soildyn.2011.01.004.
[14]       Lombardi D, Bhattacharya S, Muir D.( 2013). Dynamic soil – structure interaction of monopile supported wind turbines in cohesive soil. Soil Dyn Earthq Eng;49:165–80. https://doi.org/10.1016/j.soildyn.2013.01.015.
[15]       Bagheri P, Kim JM. (2019). Evaluation of cyclic and monotonic loading behavior of bucket foundations used for o ff shore wind turbines. Appl Ocean Res;91:101865. https://doi.org/10.1016/j.apor.2019.101865.
[16]       Kaynia, A. M. (2020). Effect of kinematic interaction on seismic response of offshore wind turbines on monopiles. Earthquake Engineering & Structural Dynamics.
[17]       Iwicki, P., & Przewłócki, J. (2020). Short review and 3-D FEM analysis of basic types of foundation for offshore wind turbines. Polish Maritime Research27(3), 31-39.‏
[18]       Hamada, M., & O’Rourke, T. D. (1992). ‘Case studies of liquefaction and lifeline performance during past earthquakes. Volume 1, Japanese Case Studies. Technical Rep. NCEER-921, 1-28.‏
[19]       Berrill, J. B., Christensen, S. A., Keenan, R. P., Okada, W., & Pettinga, J. R. (2001). Case study of lateral spreading forces on a piled foundation. Geotechnique51(6), 501-517.‏
[20]       Lombardi, D., & Bhattacharya, S. (2016). Evaluation of seismic performance of pile‐supported models in liquefiable soils. Earthquake Engineering & Structural Dynamics45(6), 1019-1038.‏
[21]       Hui, S., Tang, L., Zhang, X., Wang, Y., Ling, X., & Xu, B. (2018). An investigation of the influence of near-fault ground motion parameters on the pile’s response in liquefiable soil. Earthquake Engineering and Engineering Vibration17(4), 729-745.‏
[22]       Wang, X., Zeng, X., Li, X., & Li, J. (2020). Liquefaction characteristics of offshore wind turbine with hybrid monopile foundation via centrifuge modelling. Renewable Energy145, 2358-2372.‏
[23]       Wang, X., Zeng, X., Yang, X., & Li, J. (2019). Seismic response of offshore wind turbine with hybrid monopile foundation based on centrifuge modelling. Applied Energy235, 1335-1350.‏
[24]       Kazemi P, Kaynia AM. (2020).Earthquake response of monopiles and caissons for Offshore Wind Turbines founded in liquefiable soil. Soil Dyn Earthq Eng;136:106213. https://doi.org/10.1016/j.soildyn.2020.106213.
[25]       Patra SK, Haldar S.( 2020). Fore-aft and the side-to-side response of monopile supported offshore wind turbine in liquefiable soil. Mar Georesources Geotechnol;0:1–22. https://doi.org/10.1080/1064119X.2020.1843570.
[26]       Zhang Q, Zhai H, Wang P, Wang S, Duan L, Chen L.( 2020). Experimental study on irregular wave-induced pore-water pressures in a porous seabed around a mono-pile. Appl Ocean Res;95:102041. https://doi.org/10.1016/j.apor.2019.102041.
[27]       Van der Male P, Vergassola M, van Dalen KN. (2020).Decoupled modelling approaches for environmental interactions with monopile-based offshore wind support structures. Energies;13. https://doi.org/10.3390/en13195195.
[28]       Ghorbani A, Jahanpour R, Hasanzadehshooiili H, Ghorbani A.( 2019). Evaluation of liquefaction potential of marine sandy soil with piles considering nonlinear seismic soil – pile interaction ; A simple predictive model nonlinear seismic soil – pile interaction ; A simple predictive model. Mar Georesources Geotechnol;0:1–22. https://doi.org/10.1080/1064119X.2018.1550543.
[29]       Ko, Y. Y., & Li, Y. T. (2020). Response of a scale‐model pile group for a jacket foundation of an offshore wind turbine in liquefiable ground during shaking table tests. Earthquake Engineering & Structural Dynamics49(15), 1682-1701.‏
[30]       Biot MA. (1962). Mechanics of deformation and acoustic propagation in porous media. J Appl Phys;33:1482–98. https://doi.org/10.1063/1.1728759.
[31]       Chan, A. H. C. (1988). A unified finite element solution to static and dynamic problems of geomechanics (Doctoral dissertation, Swansea University).‏
[32]       Prevost JH. (1985). A simple plasticity theory for frictional cohesionless soils. Int J Soil Dyn Earthq Eng;4:9–17.
[33]       Elgamal, A., Yang, Z., Parra, E., & Ragheb, A. (2003). Modeling of cyclic mobility in saturated cohesionless soils. International Journal of Plasticity19(6), 883-905.‏
[34]       Elgamal, A., Yang, Z., & Parra, E. (2002). Computational modeling of cyclic mobility and post-liquefaction site response. Soil Dynamics and Earthquake Engineering22(4), 259-271.‏
[35]       Gholami, R. Aghakouchak, A. (2015), Seismic performance evaluation of jacket type offshore platforms using nonlinear dynamic analysis and considering of the effects of liquefaction in sandy soil layers. Tarbiat Modares University.(In persian)