شبیه‌سازی مود برشی مکانیک شکست در اتصال سرد بتنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، واحد بندرگز، دانشگاه آزاد اسلامی، بندرگز، ایران

2 دانشکده عمران، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

در این تحقیق به شبیه‌سازی مود برشی (مود دوم) مکانیک شکست در اتصال سرد بتنی پرداخته شده است. شبیه‌سازی با استفاده از تحلیل استاتیکی غیرخطی مصالح و هندسه انجام شده است. نمونه‌های استفاده شده جهت مدل‌سازی، نمونه‌های S شکل مورد استفاده در آزمایش پوش-آف می‌باشند. مدل‌سازی نمونه‌ها در سه وضعیت با 2، 4 و 6 آرماتور دوخت انجام شده و با نتایج حاصل از نمونه‌های آزمایشگاهی نظیر، صحت‌سنجی شده‌ است. نتایج تحلیل بیانگر این است که روش پیشنهاد شده به خوبی توانایی شبیه‌سازی رفتار مود دوم مکانیک شکست در اتصال سرد بتنی را دارا می‌باشد. روش شبیه‌سازی پیشنهادی می‌تواند جهت بررسی رفتار قاب‌های بتن‌آرمه دارای اتصال سرد و همچنین قاب‌ها و اعضای بتن‌آرمه‌ای که مورد تقویت، تعمیر یا ترمیم قرار گرفته‌اند، مفید باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation of Shear Mode in Fracture Mechanics of Concrete Cold-Joint

نویسندگان [English]

  • Ehsan Karimi 1
  • Vahid Reza Kalatjari 2
1 Department of Civil Engineering, Bandargaz Branch, Islamic Azad University, Bandargaz, Iran
2 Department of Civil Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

This paper presents a model to simulate shear mode (mode II) of fracture mechanics in concrete cold-joint. The simulation is performed using nonlinear static analysis of materials and geometry. The specimens used for modeling are S-shaped specimens used in the push-off test. The specimens modeled in three situations with 2, 4, and 6 steel connectors and validated with the results of corresponding the experimental specimens. The results of the analysis show that the proposed method has a good ability to simulate the behavior of the shear mode of fracture mechanics in concrete cold-joint. The proposed simulation method can be useful to investigate the behavior of reinforced concrete frames with cold-joint and repair, retrofitting, and strengthening reinforced concrete structures.

کلیدواژه‌ها [English]

  • Cold-Joint
  • shear mode of fracture mechanics
  • push-off test
  • shear-friction
  • steel connectors
[1]        J. Hofbeck, I. Ibrahim and A. H. Mattock. Shear transfer in reinforced concrete. In Journal Proceedings, pp. 119-128, 1969.
[2]        A. H. Mattock and N. M. Hawkins. Shear transfer in reinforced concrete—Recent research. Pci Journal, vol. 17, no. 2, pp. 55-75, 1972.
[3]        T. P. Tassios and E. N. Vintzēleou. Concrete-to-concrete friction. Journal of Structural Engineering, vol. 113, no. 4, pp. 832-849, 1987.
[4]        J. Walraven, J. Frenay and A. Pruijssers. Influence of concrete strength and load history on the shear friction capacity of concrete members. PCI journal, vol. 32, no. 1, pp. 66-84, 1987.
[5]        L. Fronteddu, P. Leger and R. Tinawi. Static and dynamic behavior of concrete lift joint interfaces. Journal of structural engineering, vol. 124, no. 12, pp. 1418-1430, 1998.
[6]        E. N. Julio, F. A. Branco and V. t. D. Silva. Concrete-to-concrete bond strength. Influence of the roughness of the substrate surface. Construction and building materials, vol. 18, no. 9, pp. 675-681, 2004.
[7]        P. M. Santos and E. N. Julio. Correlation between concrete-to-concrete bond strength and the roughness of the substrate surface. Construction and Building Materials, vol. 21, no. 8, pp. 1688-1695, 2007.
[8]        E. Gebreyouhannes, T. Kishi and K. Maekawa. Shear fatigue response of cracked concrete interface. Journal of Advanced Concrete Technology, vol. 6, no. 2, pp. 365-376, 2008.
[9]        M. Mansur, T. Vinayagam and K.-H. Tan. Shear transfer across a crack in reinforced high-strength concrete. Journal of Materials in Civil Engineering, vol. 20, no. 4, pp. 294-302, 2008.
[10]      E. Puntel and V. E. Saouma. Experimental behavior of concrete joint interfaces under reversed cyclic loading. Journal of structural engineering, vol. 134, no. 9, pp. 1558-1568, 2008.
[11]      N. Randl. Design recommendations for interface shear transfer in fib Model Code 2010. Structural Concrete, vol. 14, no. 3, pp. 230-241, 2013.
[12] ا. کریمی و و. کلات‌جاری، ارائه ی مدل عددی پیشنهادی برای شبیه‌سازی مود بازشدگی مکانیک شکست اتصال سرد بتنی، مهندسی عمران شریف، دوره 2-36، شماره 1/2، صفحه 61-70، 1399.
 [13]     E. Júlio, D. Dias-da-Costa, F. Branco and J. Alfaiate. Accuracy of design code expressions for estimating longitudinal shear strength of strengthening concrete overlays. Engineering Structures, vol. 32, no. 8, pp. 2387-2393, 2010.
[14]      D. Figueira, C. Sousa, R. Calçada and A. S. Neves. Push-off tests in the study of cyclic behavior of interfaces between concretes cast at different times. Journal of Structural Engineering, vol. 142, no. 1, pp. 04015101, 2016.
[15]      A. R. Khaloo and S. H. Ahmad. Behavior of Concrete under Combined Shear and Compressive Stresses. ACI Materials Journal, vol. 85, no. 6, pp. 551-559, 1988.
[16]      A. R. Khaloo. Numerical Evaluation of Push-Off Method for Shear Test of Plain and SFR Concrete. Asian Journal of Civil Engineering, vol. 2, no. 1, pp. 33-42, 1996.
[17]      D.-C. Feng, B. Cetiner, M. R. Azadi Kakavand and E. Taciroglu. Data-Driven Approach to Predict the Plastic Hinge Length of Reinforced Concrete Columns and Its Application. Journal of Structural Engineering, vol. 147, no. 2, pp. 04020332, 2021.
[18]      M. R. Azadi Kakavand, M. Neuner, M. Schreter and G. Hofstetter. A 3D continuum FE-model for predicting the nonlinear response and failure modes of RC frames in pushover analyses. Bulletin of Earthquake Engineering, vol. 16, no. 10, pp. 4893-4917, 2018.
[19]      M. R. Azadi Kakavand, H. Sezen and E. Taciroglu. Data-Driven Models for Predicting the Shear Strength of Rectangular and Circular Reinforced Concrete Columns. Journal of Structural Engineering, vol. 147, no. 1, pp. 04020301, 2021.
[20]      M. R. Azadi Kakavand and R. Allahvirdizadeh. Enhanced empirical models for predicting the drift capacity of less ductile RC columns with flexural, shear, or axial failure modes. Frontiers of Structural and Civil Engineering, vol. 13, no. 5, pp. 1251-1270, 2019.
[21]      M. R. Azadi Kakavand. Constitutive and Empirical Models for Predicting the Cyclic Behavior of Concrete Components, 2020.
[22]      P. Grassl, D. Xenos, U. Nyström, R. Rempling and K. Gylltoft. CDPM2: A damage-plasticity approach to modelling the failure of concrete. International Journal of Solids and Structures, vol. 50, no. 24, pp. 3805-3816, 2013.
[23]      M. R. A. Kakavand and E. Taciroglu. An enhanced damage plasticity model for predicting the cyclic behavior of plain concrete under multiaxial loading conditions. Frontiers of Structural and Civil Engineering, pp. 1-14.
[24]      Y. Lim, M. Kim, S. Shin and V. C. Li. Numerical simulation for quasi-brittle interface fracture in cementitious bi-material system, 2001.
[25]      M. N. Fardis and E.-S. Chen. A cyclic multiaxial model for concrete. Computational mechanics, vol. 1, no. 4, pp. 301-315, 1986.
[26]      R. L. Park, R. Park and T. Paulay. Reinforced concrete structures: John Wiley & Sons, 1975.
[27]      H. Dulacska. Dowel action of reinforcement crossing cracks in concrete. In Journal Proceedings, pp. 754-757, 1972.
[28]      E. Vintzēleou and T. Tassios. Mathematical models for dowel action under monotonic and cyclic conditions. Magazine of concrete research, vol. 38, no. 134, pp. 13-22, 1986.
[29]      P. W. Birkeland and H. W. Birkeland. Connections in precast concrete construction. In Journal Proceedings, pp. 345-368, 1966.
[30]      P. Soroushian, K. Obaseki and M. C. Rojas. Bearing strength and stiffness of concrete under reinforcing bars. Materials Journal, vol. 84, no. 3, pp. 179-184, 1987.
[31]      P. Beverly. fib model code for concrete structures 2010: Ernst & Sohn, 2013.
[32]      J. Lee and G. L. Fenves. Plastic-damage model for cyclic loading of concrete structures. Journal of engineering mechanics, vol. 124, no. 8, pp. 892-900, 1998.
[33]      B. Alfarah, F. López-Almansa and S. Oller. New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures. Engineering Structures, vol. 132, pp. 70-86, 2017.
[34]      P. Desayi and S. Krishnan. Equation for the stress-strain curve of concrete. In Journal Proceedings, pp. 345-350, 1964.
[35]      S. Majewski. The mechanics of structural concrete in terms of elasto-plasticity. Publishing House of Silesian University of Technology, Gliwice, 2003.
[36]      B. Massicotte, A. E. Elwi and J. G. MacGregor. Tension-stiffening model for planar reinforced concrete members. Journal of Structural Engineering, vol. 116, no. 11, pp. 3039-3058, 1990.
[37]      J. Lubliner, J. Oliver, S. Oller and E. Onate. A plastic-damage model for concrete. International Journal of solids and structures, vol. 25, no. 3, pp. 299-326, 1989.
[38]      Y. Tao and J.-F. Chen. Concrete damage plasticity model for modeling FRP-to-concrete bond behavior. Journal of composites for construction, vol. 19, no. 1, pp. 04014026, 2014.
[39]      Hibbett, Karlsson and Sorensen. ABAQUS/standard: User's Manual: Hibbitt, Karlsson & Sorensen, 1998.
[40]      ABAQUS. ABAQUS/standard user’s manual, 2014.