ارزیابی مقاومت‌برشی تیرهای بتن‌مسلح لاغر حاوی بتن با مقاومت معمولی با استفاده از شبکه‌های عصبی مصنوعی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار،دانشکده فنی مهندسی، دانشگاه ولی‌عصر رفسنجان

2 کارشناسی ارشد سازه، دانشکده فنی مهندسی، دانشگاه ولی‌عصر رفسنجان

3 عمران- علامه جعفری

4 سازمان راهداری و حمل و نقل جاده ای

چکیده

ارزیابی مقاومت نهایی برشی تیرهای بتن‌مسلح به دلیل فرضیات بسیار زیاد در براورد فرمول‌های ارائه‌شده در آیین‌نامه‌ها، یک موضوع بسیار مهم تلقی می‌شود. از طرفی محاسبه دقیق مقاومت برشی تیرهای بتن مسلح هم در زمان طراحی و هم در موارد مقاوم‌سازی از مهم‌ترین پارامترها می‌باشد. مقایسه مقاومت برشی آزمایش‌های موجود و فرمول‌بندی ارائه شده توسط آیین‌نامه ها اختلاف زیادی را نشان می‌دهد. در مقاله حاضر مدل شبکه عصبی مصنوعی به صورت یک روش قابل‌اطمینان برای شبیه­سازی و تعیین مقاومت برشی تیرهای بتن مسلح لاغر توسعه داده شده است. بدین منظور تأثیر پارامترهای مختلف بر مقاومت برشی تیرهای بتن مسلح لاغر از جمله عمق موثر، عرض تیر، دهانه­ی برش، مقاومت تسلیم آرماتور برشی و کششی، مقاومت فشاری بتن و مقدار آرماتور برشی ارزیابی شده است. هم‌چنین مطالعه­ای عددی با هدف تحلیل و بررسی پارامترهای مورد استفاده در شبکه ­انجام داده شده است. سرانجام یک رابطه تجربی با دقت مناسب برای تعیین مقاومت برشی تیرهای بتن مسلح لاغر با استفاده از شبکه­های عصبی مصنوعی بدست آمده است و در نهایت نتایج بدست آمده با آیین­نامه­های معتبر دنیا مقایسه شده است. هم‌چنین مقایسه­ی مقاومت برشی آزمایشگاهی با آیین­نامه­های مختلف و مدل پیشنهادی توسط شبکه­های عصبی مصنوعی، نشان می­دهد که مدل پیشنهاد شده از عملکرد مناسبی برخوردار است.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Shear Strength Assessment of Slender Reinforced Normal Concrete Beams using Artificial Neural Networks

نویسندگان [English]

  • Yasser Sharifi 1
  • adel Moghbeli 2
  • Mahdieh Rahmatian 3
  • khodadad Moghbeli 4
1 Department of Civil Engineering Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
2 Civil Eng., Vali-e-Asr University of Rafsanjan
3 civil, engineering
4 Road Maintenance and Transportation Organization
چکیده [English]

Predicting the shear capacity of reinforced concrete beams with a suitable accuracy is an essential issue for engineering applications, especially for the rehabilitation and design of such structures. It was found that there is a significant difference between experimental and existing code recommendations for shear capacity predictions. Shear capacity assessment of slender reinforced concrete beams in reason of several assumptions to equation developing is one of the most important issues. An artificial neural network has been developed as a reliable method to simulate and determine the shear capacity of slender concrete beams. For this purpose, the effects of several parameters on the shear strength of concrete beams were evaluated. Finally, an empirical formula with suitable accuracy was obtained to determine the shear strength of slender concrete beams. Experimental, code recommendations and model suggested by artificial neural networks for shear strength of concrete beams show that the model suggested by artificial neural networks gives more exact predictions.

کلیدواژه‌ها [English]

  • Reinforced concrete beams
  • Artificial Neural Networks Shear strength Capacity
  • experimental
  • code recommendation
مراجع
]1[ مرتضایی، ع. و خیرالدین، ع. "مدل‌‌سازی و تخمین طول مفصل پلاستیک ستونهای بتن‌آرمه به کمک شبکه‌های عصبی مصنوعی"، نشریه علمی-پژوهشی مدل‌سازی در مهندسی (دانشگاه سمنان)، سال 10، شمارة 29، تابستان 1391، صفحه 1-17.
]2[ شریفی، ی.، محمدی، ن. و مقبلی، ع. "ارزیابی مقاومت برشی تیرهای عمیق بتنی مسلح با استفاده از شبکه‌های عصبی مصنوعی". مصالح و سازه‌های بتنی، دوره 3، شماره 1، بهار و تابستان 1397، صفحه 30-43.
]3[ شریفی، ی.، محمدی، ن. و مقبلی، ع. "ارزیابی مقاومت برشی تیرهای عمیق بتنی مسلح با استفاده از شبکه‌های عصبی مصنوعی". مصالح و سازه‌های بتنی، دوره 3، شماره 2، پاییز و زمستان 1397، صفحه 77-88.
[4] Russo, G., Mitri, D., & Pauletta, M. (2013). Shear strength design formula for RC beams with stirrups. Engineering Structures51, 226-235.
[5] Gaetano R., Denis M., and Margherita P. "Shear strength design formula for RC beams with stirrups." Engineering Structures 51 (2013): 226-235.
[6] Yoshida Y. Shear reinforcement for large lightly reinforced concrete members. Master’s thesis. Department of Civil Engineering, University of Toronto; 2000. p. 150.
[7] Karayannis CG, Chalioris CE, Mavroeidis PD. Shear capacity of RC rectangular beams with continuous spiral transversal reinforcement. WIT Trans Model.
[8] Cao, S. Size effect and the influence of longitudinal reinforcement on the shear response of large reinforced concrete members (Master’s thesis). Department of Civil Engineering, University of Toronto; 2001.
[9] Tohidi, S. and Sharifi Y. (2015). Empirical modeling of distortional buckling strength of half-through bridge girders via stepwise regression method. Advances in Structural Engineering, 18(9), 1383-1397.
[10] Tohidi, S. and Sharifi, Y. (201). Neural networks for inelastic distortional buckling capacity assessment of steel I-beams, Thin-Walled Structures, 94(9), 359-371.
[11] Tohidi, S. and Sharifi, Y. (2014). Inelastic lateral-torsional buckling capacity of corroded web opening steel beams using artificial neural networks, The IES Journal Part A: Civil & Structural Engineering, 8(1), 24-40.
[12] Sharifi, Y. and Tohidi, S. (2014). Lateral-torsional buckling capacity assessment of web opening steel girders by artificial neural networks–elastic investigation, Frontiers of Structural and Civil Engineering, 8(2), 167–177.
[13] Sharifi Y, Tohidi S. (2014). Ultimate Capacity Assessment of Web Plate Beams with Pitting Corrosion Subjected to Patch Loading by Artificial Neural Networks. Advanced Steel Construction 10(3), 325-350.
[14] Tohidi, S. and Sharifi, Y. (2014). A new predictive model for restrained distortional buckling strength of half-through bridge girders using artificial neural network, KSCE Journal of Civil Engineering, 10(3), 325–350.
[15] Tohidi, S. and Sharifi, Y. (2014). Load-carrying capacity of locally corroded steel plate girder ends using artificial neural network, Thin-Walled Structures, 100(1), 48–61.
[16] Sharifi Y., Hosseinpour M., Moghbeli A., Sharifi H. (2019). Lateral Torsional Buckling Capacity Assessment of Castellated Steel Beams Using Artificial Neural Networks. International Journal of Steel Structures, 19(5):1408–1420.
[17] Sharifi Y., Moghbeli A., Hosseinpour M., Sharifi H. (2019). Study of Neural Network Models for the Ultimate Capacities of Cellular Steel Beams. Iranian Journal of Science and Technology, Transactions of Civil Engineering, https://doi.org/10.1007/s40996-019-00281-z.
[18] Sharifi Y., Moghbeli A., Hosseinpour M., Sharifi H. (2019). Neural networks for lateral torsional buckling strength assessment of cellular steel I-beams. Advances in Structural Engineering 22 (9), 2192-2202.
[19] Sharifi Y., Moghbeli A. (2019). Stepwise Regression for shear capacity assessment of steel fiber reinforced concrete beams. J Rehabil Civ Eng 7 (2), 1-14
[20] Hosseinpour M., Sharifi H., Sharifi Y. (2019). Stepwise regression modeling for compressive strength assessment of mortar containing metakaolin. International Journal of Modelling and Simulation 38 (4), 207-215.
[21] Sharifi Y., Hosseinpour M. (2019). Adaptive neuro-fuzzy inference system and stepwise regression for compressive strength assessment of concrete containing metakaolin. Iran University of Science & Technology 9 (2), 251-272.
[22] Sharifi Y., Lotfi F., Moghbeli A. (2019). Compressive strength prediction by ANN formulation approach for FRP confined rectangular concrete columns. Journal of Rehabilitation in Civil Engineering 7 (3), 182-203.
[23] Code, S.B., )2005). Building Code Requirements for Structural Concrete (ACI 318M-02) and Commentary (ACI 318RM-02).
[24] Australian Standard, A.S., (2001). AS 3600 2001: Concrete Structures. Standards Association of Australia, p.176.
[25] National Building Regulations (1392); Topic 9: Design and Implementation of Reinforced Concrete Buildings.
[26] Canadian Standards, (2014). CSA, Design of Concrete Structures A23.3-14, Canadian Standards Association, Rexdale, Ontario.
[27] Garson, G. D. Interpreting neural-network connection weights, AI Expert, 1991, Vol. 6, pp. 47–51.